当前位置: 首页 > 工具软件 > ODE > 使用案例 >

matlab ODE数值解

柴嘉石
2023-12-01

ode45

ode45,常微分方程的数值求解。MATLAB提供了求常微分方程数值解的函数。当难以求得微分方程的解析解时,可以求其数值解,Matlab中求微分方程数值解的函数有七个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。
ode是Matlab专门用于解 微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta算法;其他采用相同算法的变步长求解器还有ode23。
ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(Δx)^5。解决的是Nonstiff(非刚性)常微分方程。
ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode15s试试。
[T,Y] = ode45(odefun,tspan,y0)
[T,Y] = ode45(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = ode45(odefun,tspan,y0,options)
sol = ode45(odefun,[t0tf],y0...)
[T,Y] = ode45(odefun,tspan,y0)
odefun 是函数句柄,可以是函数文件名, 匿名函数句柄或 内联函数
tspan 是区间 [t0 tf] 或者一系列散点[t0,t1,...,tf]
y0 是初始值向量
T 返回列向量的时间点
Y 返回对应T的求解列向量
[T,Y] = ode45(odefun,tspan,y0,options)
options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等
[T,Y] = ode45(odefun,tspan,y0,options)
options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等
[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)
在设置了事件参数后的对应输出
TE 事件发生时间
YE 事件发生时之答案
IE 事件函数消失时之指针i
sol =ode45(odefun,[t0 tf],y0...)
sol 结构体输出结果

转载于:https://www.cnblogs.com/xiaobaohuizi/p/10060334.html

 类似资料: