apple开源机器学习框架turicreate中的SFrame,是一种新形态的dataframe,作为之前热爱过R语言的dataframe的玩家来看,还不够简洁,不过有自己独特的功能。
github:https://apple.github.io/turicreate/docs/api/generated/turicreate.SFrame.html
导入模块的方式:
# 第一种
import turicreate as tc
# 第二种
from turicreate import SFrame
支持csv/txt/json
主函数
'''
read_csv(url, delimiter=',', header=True, error_bad_lines=False, comment_char='',
escape_char='\\', double_quote=True, quote_char='"', skip_initial_space=True,
column_type_hints=None, na_values=['NA'], line_terminator='\n', usecols=[], nrows=None,
skiprows=0, verbose=True, nrows_to_infer=100, **kwargs)
'''
读入举例:
# 离线版
sf = tc.SFrame.read_csv('/../data.csv')
# 在线版
>>> url = 'https://static.turi.com/datasets/rating_data_example.csv'
>>> sf = SFrame.read_csv(url)
导出举例:
# 第一种
sf.export_csv('/../1.csv')
# 第二种
sf.save('../data.csv', format='csv')
# 读入
>>> !cat input.json
[{'a':1,'b':1}, {'a':2,'b':2}, {'a':3,'b':3}]
>>> SFrame.read_json('input.json', orient='records')
Columns:
a int
b int
Rows: 3
Data:
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
+---+---+
# 导出
sf.export_json('/../1.json')
sf.save('1.json', format='json')
其中!cat 有查看功能。
sf.save('/../mysframedir')
sf2 = tc.load_sframe('/../mysframedir')
有点像R里面的workspace的保存,一股脑保存出去,然后再读进来。
.
借助SArray来生成:
from turicreate import SArray
ids = tc.SArray([1,2,3])
vals = tc.SArray(['A','B','C'])
#ids = SArray([1,2,3])
#vals = SArray(['A','B','C'])
sf = SFrame({'id':ids,'val':vals})
sf
下面也有从dict格式导入、还有从pd.dataframe两种格式导入。
sf = tc.SFrame({'id':[1,2,3],'val':['A','B','C']}) # 直接导入
sf = tc.SFrame(pd.DataFrame({'id':[1,2,3],'val':['A','B','C']})) # pd.dataframe
sf
通过[‘name’]选中。
sf = SFrame({'id':[1,2,3],'val':['A','B','C']})
sf['id']
sf[['val','id']]
del sf["id"] # 删除列
这个跟pd.DataFrame一样
通过一个函数来选择:
>>> sf = turicreate.SFrame({'user_id': [1,2,3],
... 'user_name': ['alice', 'bob', 'charlie'],
... 'zipcode': [98101, 98102, 98103]
... })
>>> # This line is equivalent to `sf2 = sf[['user_id', 'zipcode']]`
>>> sf2 = sf.select_columns(['user_id', 'zipcode'])
>>> sf2
+---------+---------+
| user_id | zipcode |
+---------+---------+
| 1 | 98101 |
| 2 | 98102 |
| 3 | 98103 |
+---------+---------+
[3 rows x 2 columns]
# 找列名以及每一列的type
sf = SFrame({'id':[1,2,3],'val':['A','B','C']})
print(sf.column_names())
print(sf.column_types())
# 新增列
>>> sf = turicreate.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']})
>>> sa = turicreate.SArray(['cat', 'dog', 'fossa'])
>>> # This line is equivalant to `sf['species'] = sa`
>>> res = sf.add_column(sa, 'species')
>>> res
+----+-----+---------+
| id | val | species |
+----+-----+---------+
| 1 | A | cat |
| 2 | B | dog |
| 3 | C | fossa |
+----+-----+---------+
[3 rows x 3 columns]
sf[1]
sf[1:]
>>> {'id': 2, 'val': 'B'}
切片一样,但是sf[1]代表选中第二行,返回的是dict格式!奇特!
等同于pd.concat
# 新增数据:行联合
>>> sf = turicreate.SFrame({'id': [4, 6, 8], 'val': ['D', 'F', 'H']})
>>> sf2 = turicreate.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']})
>>> sf = sf.append(sf2)
>>> sf
+----+-----+
| id | val |
+----+-----+
| 4 | D |
| 6 | F |
| 8 | H |
| 1 | A |
| 2 | B |
| 3 | C |
+----+-----+
[6 rows x 2 columns]
sf[(sf['id'] >= 1) & (sf['id'] <= 2)]
sf = SFrame({'id':[1,2,3],'val':['A','B','C'],'val2':[5,6,7]})
sf[2]['id']
如何选中’id’列的第三行内容,可以通过这样的方式选中。
(sf.ix[2,1]的方式不可用)
SFrame本身不会生成Index,跟pd的不一样。需要额外生成上去。
# 新增Index
>>> sf = turicreate.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]})
+------+------+
| a | b |
+------+------+
| 1 | a |
| None | b |
| None | None |
+------+------+
>>> sf.add_row_number()
+----+------+------+
| id | a | b |
+----+------+------+
| 0 | 1 | a |
| 1 | None | b |
| 2 | None | None |
+----+------+------+
[3 rows x 3 columns]
有以下几种模式:
# 只保留全部有数字的行
>>> sf = turicreate.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]})
>>> sf.dropna()
+---+---+
| a | b |
+---+---+
| 1 | a |
+---+---+
[1 rows x 2 columns]
# 只去掉全部为None的行
>>> sf.dropna(any="all")
+------+---+
| a | b |
+------+---+
| 1 | a |
| None | b |
+------+---+
[2 rows x 2 columns]
# 按照a这行进行去缺失值
>>> sf.dropna('a', any="all")
+---+---+
| a | b |
+---+---+
| 1 | a |
+---+---+
[1 rows x 2 columns]
# 把缺失值去掉的也保存下来
>>> sf = turicreate.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]})
>>> good, bad = sf.dropna_split()
>>> good
+---+---+
| a | b |
+---+---+
| 1 | a |
+---+---+
[1 rows x 2 columns]
>>> bad
+------+------+
| a | b |
+------+------+
| None | b |
| None | None |
+------+------+
[2 rows x 2 columns]
# 缺失值填补
>>> sf = turicreate.SFrame({'a':[1, None, None],
... 'b':['13.1', '17.2', None]})
>>> sf = sf.fillna('a', 0)
>>> sf
+---+------+
| a | b |
+---+------+
| 1 | 13.1 |
| 0 | 17.2 |
| 0 | None |
+---+------+
[3 rows x 2 columns]
数据排序有以下几种:
# 按某行排序
>>> sf = turicreate.SFrame({'a':[1,3,2,1],
... 'b':['a','c','b','b'],
... 'c':['x','y','z','y']})
>>> sf
+---+---+---+
| a | b | c |
+---+---+---+
| 1 | a | x |
| 3 | c | y |
| 2 | b | z |
| 1 | b | y |
+---+---+---+
[4 rows x 3 columns]
>>> sf.sort('a')
+---+---+---+
| a | b | c |
+---+---+---+
| 1 | a | x |
| 1 | b | y |
| 2 | b | z |
| 3 | c | y |
+---+---+---+
[4 rows x 3 columns]
>>> sf.sort('a', ascending = False)
+---+---+---+
| a | b | c |
+---+---+---+
| 3 | c | y |
| 2 | b | z |
| 1 | a | x |
| 1 | b | y |
+---+---+---+
[4 rows x 3 columns]
>>> sf.sort(['a', 'b'])
+---+---+---+
| a | b | c |
+---+---+---+
| 1 | a | x |
| 1 | b | y |
| 2 | b | z |
| 3 | c | y |
+---+---+---+
[4 rows x 3 columns]
等同于pd.merge
# 数据合并
>>> animals = turicreate.SFrame({'id': [1, 2, 3, 4],
... 'name': ['dog', 'cat', 'sheep', 'cow']})
>>> sounds = turicreate.SFrame({'id': [1, 3, 4, 5],
... 'sound': ['woof', 'baa', 'moo', 'oink']})
>>> animals.join(sounds, how='inner')
+----+-------+-------+
| id | name | sound |
+----+-------+-------+
| 1 | dog | woof |
| 3 | sheep | baa |
| 4 | cow | moo |
+----+-------+-------+
[3 rows x 3 columns]
>>> animals.join(sounds, on='id', how='left')
+----+-------+-------+
| id | name | sound |
+----+-------+-------+
| 1 | dog | woof |
| 3 | sheep | baa |
| 4 | cow | moo |
| 2 | cat | None |
+----+-------+-------+
[4 rows x 3 columns]
>>> animals.join(sounds, on=['id'], how='right')
+----+-------+-------+
| id | name | sound |
+----+-------+-------+
| 1 | dog | woof |
| 3 | sheep | baa |
| 4 | cow | moo |
| 5 | None | oink |
+----+-------+-------+
[4 rows x 3 columns]
>>> animals.join(sounds, on={'id':'id'}, how='outer')
+----+-------+-------+
| id | name | sound |
+----+-------+-------+
| 1 | dog | woof |
| 3 | sheep | baa |
| 4 | cow | moo |
| 5 | None | oink |
| 2 | cat | None |
+----+-------+-------+
[5 rows x 3 columns]
# 去重
>>> sf = turicreate.SFrame({'id':[1,2,3,3,4], 'value':[1,2,3,3,4]})
>>> sf
+----+-------+
| id | value |
+----+-------+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 3 | 3 |
| 4 | 4 |
+----+-------+
[5 rows x 2 columns]
>>> sf.unique()
+----+-------+
| id | value |
+----+-------+
| 2 | 2 |
| 4 | 4 |
| 3 | 3 |
| 1 | 1 |
+----+-------+
[4 rows x 2 columns]
.
# 如何使用apply
>>> sf = turicreate.SFrame({'user_id': [1, 2, 3], 'movie_id': [3, 3, 6],
'rating': [4, 5, 1]})
>>> sf.apply(lambda x: str(x['user_id']) + str(x['movie_id']) + str(x['rating']))
dtype: str
Rows: 3
['134', '235', '361']
>>> import turicreate.aggregate as agg
>>> url = 'https://static.turi.com/datasets/rating_data_example.csv'
>>> sf = turicreate.SFrame.read_csv(url)
>>> sf
+---------+----------+--------+
| user_id | movie_id | rating |
+---------+----------+--------+
| 25904 | 1663 | 3 |
| 25907 | 1663 | 3 |
| 25923 | 1663 | 3 |
| 25924 | 1663 | 3 |
| 25928 | 1663 | 2 |
| 25933 | 1663 | 4 |
| 25934 | 1663 | 4 |
| 25935 | 1663 | 4 |
| 25936 | 1663 | 5 |
| 25937 | 1663 | 2 |
| ... | ... | ... |
+---------+----------+--------+
[10000 rows x 3 columns]
# 分组加总
>>> user_count = sf.groupby(key_column_names='user_id',
... operations={'count': agg.COUNT()})
>>> user_count
+---------+-------+
| user_id | count |
+---------+-------+
| 62361 | 1 |
| 30727 | 1 |
| 40111 | 1 |
| 50513 | 1 |
| 35140 | 1 |
| 42352 | 1 |
| 29667 | 1 |
| 46242 | 1 |
| 58310 | 1 |
| 64614 | 1 |
| ... | ... |
+---------+-------+
[9852 rows x 2 columns]
#
>>> user_rating_stats = sf.groupby(key_column_names='user_id',
... operations={
... 'mean_rating': agg.MEAN('rating'),
... 'std_rating': agg.STD('rating')
... })
>>> user_rating_stats
+---------+-------------+------------+
| user_id | mean_rating | std_rating |
+---------+-------------+------------+
| 62361 | 5.0 | 0.0 |
| 30727 | 4.0 | 0.0 |
| 40111 | 2.0 | 0.0 |
| 50513 | 4.0 | 0.0 |
| 35140 | 4.0 | 0.0 |
| 42352 | 5.0 | 0.0 |
| 29667 | 4.0 | 0.0 |
| 46242 | 5.0 | 0.0 |
| 58310 | 2.0 | 0.0 |
| 64614 | 2.0 | 0.0 |
| ... | ... | ... |
+---------+-------------+------------+
[9852 rows x 3 columns]
# 数据dataframe框内拆解
>>> sf = turicreate.SFrame({'topic':[1,2,3,4],
... 'words': [{'a':3, 'cat':2},
... {'a':1, 'the':2},
... {'the':1, 'dog':3},
... {}]
... })
+-------+----------------------+
| topic | words |
+-------+----------------------+
| 1 | {'a': 3, 'cat': 2} |
| 2 | {'a': 1, 'the': 2} |
| 3 | {'the': 1, 'dog': 3} |
| 4 | {} |
+-------+----------------------+
[4 rows x 2 columns]
# 一个拆成两列
>>> sf.stack('words', new_column_name=['word', 'count'])
+-------+------+-------+
| topic | word | count |
+-------+------+-------+
| 1 | a | 3 |
| 1 | cat | 2 |
| 2 | a | 1 |
| 2 | the | 2 |
| 3 | the | 1 |
| 3 | dog | 3 |
| 4 | None | None |
+-------+------+-------+
[7 rows x 3 columns]
# 拆成一列
>>> sf = turicreate.SFrame({'topic':[1,2,3],
... 'friends':[[2,3,4], [5,6],
... [4,5,10,None]]
... })
>>> sf
+-------+------------------+
| topic | friends |
+-------+------------------+
| 1 | [2, 3, 4] |
| 2 | [5, 6] |
| 3 | [4, 5, 10, None] |
+----- -+------------------+
[3 rows x 2 columns]
# 格式转换
SFrame.to_dataframe() Convert this SFrame to pandas.DataFrame.
SFrame.to_numpy() Converts this SFrame to a numpy array
SFrame.to_sql(conn, table_name[, ...]) Convert an SFrame to a single table in a SQL database.