packagetest.ffm83.commons.math;
importorg.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.LUDecomposition;
importorg.apache.commons.math3.linear.RealMatrix;
importorg.apache.commons.math3.stat.descriptive.moment.GeometricMean;
importorg.apache.commons.math3.stat.descriptive.moment.Kurtosis;
importorg.apache.commons.math3.stat.descriptive.moment.Mean;
importorg.apache.commons.math3.stat.descriptive.moment.Skewness;
importorg.apache.commons.math3.stat.descriptive.moment.StandardDeviation;
importorg.apache.commons.math3.stat.descriptive.moment.Variance;
import org.apache.commons.math3.stat.descriptive.rank.Max;
importorg.apache.commons.math3.stat.descriptive.rank.Min;
importorg.apache.commons.math3.stat.descriptive.rank.Percentile;
importorg.apache.commons.math3.stat.descriptive.summary.Product;
importorg.apache.commons.math3.stat.descriptive.summary.Sum;
importorg.apache.commons.math3.stat.descriptive.summary.SumOfSquares;
/**
* 简单使用commons Math方法
* @author 范芳铭
*/
public class MathUsage {
public static void main(String[] args) {
double[] values = new double[] { 0.33, 1.33,0.27333, 0.3, 0.501,
0.444, 0.44, 0.34496, 0.33,0.3, 0.292, 0.667 };
Min min = new Min();
Max max = new Max();
Mean mean = new Mean(); // 算术平均值
Product product = new Product();//乘积
Sum sum = new Sum();
Variance variance = new Variance();//方差
System.out.println("min: " +min.evaluate(values));
System.out.println("max: " +max.evaluate(values));
System.out.println("mean: " +mean.evaluate(values));
System.out.println("product:" + product.evaluate(values));
System.out.println("sum: " +sum.evaluate(values));
System.out.println("variance:" + variance.evaluate(values));
Percentile percentile = newPercentile(); // 百分位数
GeometricMean geoMean = newGeometricMean(); // 几何平均数,n个正数的连乘积的n次算术根叫做这n个数的几何平均数
Skewness skewness = new Skewness(); //Skewness();
Kurtosis kurtosis = new Kurtosis(); //Kurtosis,峰度
SumOfSquares sumOfSquares = newSumOfSquares(); // 平方和
StandardDeviation StandardDeviation =new StandardDeviation();//标准差
System.out.println("80 percentilevalue: "
+ percentile.evaluate(values,80.0));
System.out.println("geometricmean: " + geoMean.evaluate(values));
System.out.println("skewness:" + skewness.evaluate(values));
System.out.println("kurtosis:" + kurtosis.evaluate(values));
System.out.println("sumOfSquares:" + sumOfSquares.evaluate(values));
System.out.println("StandardDeviation: " +StandardDeviation.evaluate(values));
System.out.println("-------------------------------------");
// Create a real matrix with two rowsand three columns
double[][] matrixData = { {1d,2d,3d},{2d,5d,3d}};
RealMatrix m = newArray2DRowRealMatrix(matrixData);
System.out.println(m);
// One more with three rows, twocolumns
double[][] matrixData2 = { {1d,2d},{2d,5d}, {1d, 7d}};
RealMatrix n = newArray2DRowRealMatrix(matrixData2);
// Note: The constructor copies the input double[][] array.
// Now multiply m by n
RealMatrix p = m.multiply(n);
System.out.println("p:"+p);
System.out.println(p.getRowDimension()); // 2
System.out.println(p.getColumnDimension()); // 2
// Invert p, using LUdecomposition
RealMatrix pInverse = newLUDecomposition(p).getSolver().getInverse();
System.out.println(pInverse);
}
}
运行结果如下:
min: 0.27333
max: 1.33
mean: 0.46269083333333333
product: 2.3429343978460972E-5
sum: 5.552289999999999
variance: 0.08757300031742428
percentile value: 0.5674000000000001
geometric mean: 0.4112886050879374
skewness: 2.670095445623868
kurtosis: 7.718241303328169
sumOfSquares: 3.5322966905000004
StandardDeviation: 0.2959273564870681
-------------------------------------
Array2DRowRealMatrix{{1.0,2.0,3.0},{2.0,5.0,3.0}}
p:Array2DRowRealMatrix{{8.0,33.0},{15.0,50.0}}
Array2DRowRealMatrix{{-0.5263157895,0.3473684211},{0.1578947368,-0.0842105263}}
package com;
import org.apache.commons.lang.math.Range;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.math3.stat.StatUtils;
import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation;
import org.apache.commons.math3.stat.descriptive.rank.Median;
/*
* @description:简单的数据统计分析
* */
public class MathYsf {
public static void main(String[] args){
double[] values = new double[] { 0.33, 1.33,0.27333, 0.3, 0.501,
0.444, 0.44, 0.34496, 0.33,0.3, 0.292, 0.667 };
double[] values2 = new double[] { 0.89, 1.51,0.37999, 0.4, 0.701,
0.484, 0.54, 0.56496, 0.43,0.3, 0.392, 0.567 };
//计数
System.out.println("计算样本个数为:" +values.length);
//mean--算数平均数
System.out.println("平均数:" + StatUtils.mean(values));
//sum--和
System.out.println("所有数据相加结果为:" + StatUtils.sum(values));
//max--最小值
System.out.println("最小值:" + StatUtils.min(values));
//max--最大值
System.out.println("最大值:" + StatUtils.max(values));
//范围
System.out.println("范围是:" + (StatUtils.max(values)-StatUtils.min(values)));
//标准差
StandardDeviation standardDeviation =new StandardDeviation();
System.out.println("一组数据的标准差为:" + standardDeviation.evaluate(values));
//variance--方差
System.out.println("一组数据的方差为:" + StatUtils.variance(values));
//median--中位数
Median median= new Median();
System.out.println("中位数:" + median.evaluate(values));
//mode--众数
double[] res = StatUtils.mode(values);
System.out.println("众数:" + res[0]+","+res[1]);
for(int i = 0;i<res.length;i++){
System.out.println("第"+(i+1)+"个众数为:"+res[i]);
}
//geometricMean--几何平均数
System.out.println("几何平均数为:" +StatUtils.geometricMean(values));
//meanDifference-- 平均差,平均概率偏差
System.out.println("平均差为:"+StatUtils.meanDifference(values, values2));
//normalize--标准化
double[] norm = StatUtils.normalize(values2);
for(int i = 0;i<res.length;i++){
System.out.println("第"+(i+1)+"个数据标准化结果为:" + norm[i]);
}
//percentile--百分位数
System.out.println("从小到大排序后位于80%位置的数:" + StatUtils.percentile(values, 70.0));
//populationVariance--总体方差
System.out.println("总体方差为:" + StatUtils.populationVariance(values));
//product--乘积
System.out.println("所有数据相乘结果为:" + StatUtils.product(values));
//sumDifference--和差
System.out.println("两样本数据的和差为:" + StatUtils.sumDifference(values,values2));
//sumLog--对数求和
System.out.println("一组数据的对数求和为:" + StatUtils.sumLog(values));
//sumSq--计算一组数值的平方和
System.out.println("一组数据的平方和:" + StatUtils.sumSq(values));
//varianceDifference --方差差异性。
System.out.println("一组数据的方差差异性为:" + StatUtils.varianceDifference(values,values2,StatUtils.meanDifference(values, values2)));
}
}