莫烦python的强化学习教程中tabular Q-learning小例子是一个一维的空间,原文链接https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-1-general-rl/,本文将其改进为二维空间,代码如下.
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 10 17:03:11 2019
@author: zhpwhy
"""
import numpy as np
import pandas as pd
import time
np.random.seed(1) # 随机数种子
N_STATES = 5 # 2维世界的宽度
M_STATES = 3 # 2维世界的高度
ACTIONS = ['left', 'right','up','down'] # 探索者的可用动作
EPSILON = 0.9 # 贪婪度 greedy
ALPHA = 0.1 # 学习率
GAMMA = 0.9 # 奖励递减值
MAX_EPISODES = 33 # 最大回合数
FRESH_TIME = 0.3 # 移动间隔时间
def build_q_table(n_states, m_states, actions):
table = pd.DataFrame(
np.zeros((n_states*m_states, len(actions))), # q_table 全 0 初始
columns=actions, # columns 对应的是行为名称
)
# print(table) # show table
return table
# 在某个 state 地点, 选择行为
def choose_action(state, q_table):
# This is how to choose an action
state_actions = q_table.iloc[state, :]# 选出这个 state 的所有 action 值
if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()): # 非贪婪 or 或者这个 state 还没有探索过
action_name = np.random.choice(ACTIONS)
else: # act greedy
action_name = state_actions.idxmax() # 贪婪模式
return action_name
def get_env_feedback(S, A):
# This is how agent will interact with the environment
n_now_states=int(S / N_STATES) #现在目标所在行位置
m_now_states=int(S % N_STATES) #现在目标所在列位置
print(n_now_states,m_now_states)
if A == 'right': # move right
if m_now_states == N_STATES - 2 and n_now_states== M_STATES-1: # terminate
S_ = 'terminal'
R = 1
elif (S+1) % N_STATES ==0 :
S_ = S
R = 0
else:
S_ = S + 1
R = 0
elif A == 'left': # move left
R = 0
if S % N_STATES ==0 :
S_ = S
R = 0
else:
S_ = S - 1
R = 0
elif A == 'down': # move down
if n_now_states == M_STATES - 2 and m_now_states== N_STATES-1: # terminate
S_ = 'terminal'
R = 1
elif S >= N_STATES*(M_STATES-1) :
S_ = S
R = 0
else:
S_ = S + N_STATES
R = 0
elif A == 'up': # move up
R = 0
if S <= N_STATES :
S_ = S
R = 0
else:
S_ = S - N_STATES
R = 0
return S_, R
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES*M_STATES-1) + ['T'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction))
time.sleep(2)
print('\r ')
else:
env_list[S] = 'o'
print('\r{}'.format('******************'))
for i in range(M_STATES):
interaction = ''.join(env_list[N_STATES*i:N_STATES*(i+1)])
print('\r{}'.format(interaction))
time.sleep(FRESH_TIME)
def rl():
# main part of RL loop
q_table = build_q_table(N_STATES, M_STATES, ACTIONS)
for episode in range(MAX_EPISODES):
step_counter = 0
S = 0
is_terminated = False
update_env(S, episode, step_counter)
while not is_terminated:
A = choose_action(S, q_table)
S_, R = get_env_feedback(S, A) # take action & get next state and reward
q_predict = q_table.loc[S, A]
if S_ != 'terminal':
q_target = R + GAMMA * q_table.iloc[S_, :].max() # next state is not terminal
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # update
S = S_ # move to next state
update_env(S, episode, step_counter+1)
step_counter += 1
return q_table
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)