对于阅读NNVM源代码而言,建议从最外层使用的nnvm.compiler.build
函数开始阅读,逐渐深入.
这里先展示一个最简单的NNVM编译器的使用过程:
# 从本地文件加载mxnet模型
mx_sym, args, auxs = mx.model.load_checkpoint('mobilenet', 0)
nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(mx_sym, args, auxs)
# 设置输入数据的shape
batch_size = 1
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
# 进行NNVM编译
with nnvm.compiler.build_config(opt_level = 3):
graph, lib, params = nnvm.compiler.build(
nnvm_sym, tvm.target.rasp(), shape={"data": data_shape}, params = nnvm_params)
# 保存生成的执行so库
lib.export_library("mobilenet_deploy.so")
可以将nnvm.compiler.build
的执行过程总结为如下步骤:
在介绍具体的步骤之前先介绍graph.apply
这个函数:
展示python/nnvm/graph.py
的部分代码
class Graph(object):
def apply(self, passes):
"""Apply passes to the graph
Parameters
----------
passes : str or list of str
The passes to be applied
Returns
-------
g : Graph
The transformed graph.
"""
if isinstance(passes, string_types):
passes = [passes]
cpass = c_array(ctypes.c_char_p, [c_str(key) for key in passes])
ghandle = GraphHandle()
npass = nn_uint(len(passes))
check_call(_LIB.NNGraphApplyPasses(self.handle, npass, cpass, ctypes.byref(ghandle)))
return Graph(ghandle)
从上述代码可以看到graph.apply
用于调用后端Pass返回转换之后的图.具体通过NNGraphApplyPasses
接口来实现调用.
展示python/nnvm/build_module.py
的部分代码
# 代码可能有缩减,只展示核心代码
graph = graph_attr.set_shape_inputs(graph, shape)
graph = graph.apply("InferShape")
graph = graph_attr.set_dtype_inputs(graph, dtype)
graph._set_json_attr("target", str(target), "str")
graph._set_json_attr("target_host", str(target_host), "str")
graph._set_json_attr("opt_level", 1, "int")
graph = graph.apply("InferShape").apply("InferType")
graph = graph.apply("GraphFusePartition").apply("GraphFuseCompile")
libmod = graph_attr._move_out_module(graph, "module")
上述代码中的graph.apply
属于核心代码,这些代码用于调用后端Pass.
graph_attr._move_out_module
的定义位于python/nnvm/graph_attr.py
_move_out_module = tvm.get_global_func("nnvm.graph._move_module")
nnvm.graph._move_module的定义位于src/compiler/packed_func_ext.cc
TVM_REGISTER_GLOBAL("nnvm.graph._move_module")
.set_body([](TVMArgs args, TVMRetValue *rv) {
const nnvm::Graph& g = args[0].AsExtension<Graph>();
*rv = const_cast<nnvm::Graph*>(&g)->MoveCopyAttr<tvm::runtime::Module>(args[1]);
});
Graph.MoveCopyAttr的定义位于include/nnvm/top/graph.h
template<typename T>
inline T Graph::MoveCopyAttr(const std::string& attr_name) {
auto it = attrs.find(attr_name);
CHECK(it != attrs.end())
<< "Cannot find attribute " << attr_name << " in the graph";
std::shared_ptr<any> sptr = it->second;
attrs.erase(it);
if (sptr.unique()) {
return std::move(nnvm::get<T>(*sptr));
} else {
return nnvm::get<T>(*sptr);
}
}
从上述代码可以看到graph_attr._move_out_module(graph, "module")
访问的是一个tvm::runtime::Module的对象.但是还不清楚这个Module对象是如何生成的,所以需要继续看下去.
在NNVM代码工程中搜索attrs["module"]
得到如下代码:
/src/compiler/graph_fuse.cc
// 代码段位于GraphFuseCompile函数中
static const PackedFunc& fbuild = GetPackedFunc("nnvm.compiler.build_target");
tvm::runtime::Module module = fbuild(func_list, target, target_host);
ret.attrs["module"] = std::make_shared<any>(std::move(module));
上述代码中fbuild函数是使用GetPackedFunc获得,根据深度学习编译中间件之NNVM(四)TVM设计理念与开发者指南中提到的,此处是使用了C++调用Python函数的方法.
通过全局搜索可以得到nnvm.compiler.build_target
的定义位于python/nnvm/build_module.py
:
@tvm.register_func("nnvm.compiler.build_target")
def _build(funcs, target, target_host):
if target_host == "":
target_host = None
return tvm.build(funcs, target=target, target_host=target_host)
nnvm.compiler.build_target
调用了tvm.build
tvm.build
的定义位于tvm/python/tvm/build_module.py
,执行到这里表示对于整个编译过程而言已经完成了NNVM图优化的阶段,进入到TVM代码生成的阶段.
在介绍TVM具体的代码生成过程前,先了解NNVM传送给TVM进行代码生成的数据结构为:
Array<tvm::LoweredFunc> func_list;
// tvm::LoweredFunc数组
这个数据结构包含了被lower的TVM函数的相关信息,是代码生成前的最终数据结构(IR表示)。这里将介绍这个IR表示是如何生成的。
展示nnvm::Graph GraphFuseCompile函数中和lower相关的部分代码:
src/compiler/graph_fuse.cc
fe.compiled_func = GraphLower(fe.subgraph, inputs, target, sub_master_idx);
for (LoweredFunc f : fe.compiled_func->funcs) {
if (!func_set.count(f.get())) {
func_set.insert(f.get());
func_list.push_back(f);
}
}
src/compiler/compile_engine.cc
GraphFunc GraphLower(Graph graph,
const Array<tvm::Tensor>& inputs,
const std::string& target,
int master_idx) {
return CompileEngine::Global()->Lower(graph, inputs, target, master_idx);
}
// CompileEngine::Global()->Lower最终调用了CompileEngine::DoLower函数
// run the actual lowering process
GraphFunc DoLower(Graph graph,
const Array<tvm::Tensor>& inputs,
const std::string& target,
int master_idx) {
std::string readable_name;
Array<tvm::Tensor> all_args;
Array<tvm::Tensor> outputs;
Schedule sch;
std::tie(sch, all_args, graph) = GetScheduleArgs(
graph, inputs, target, master_idx,
&readable_name, &outputs);
std::shared_ptr<GraphFuncNode> gf = std::make_shared<GraphFuncNode>();
gf->target = target;
gf->func_name = GetUniqeName(readable_name);
gf->inputs = inputs;
gf->outputs = outputs;
static const PackedFunc& flower = GetPackedFunc("nnvm.compiler.lower");
gf->funcs = flower(sch, all_args, gf->func_name, graph);
return GraphFunc(gf);
}
// DoLower函数中比较重要的有两点
// 1. GetScheduleArgs函数用于生成Schedule参数
// 2. GetPackedFunc("nnvm.compiler.lower")重新调用了TVM的Python接口
GetScheduleArgs
函数定义位于src/compiler/compile_engine.cc
// get schedule and its args
std::tuple<Schedule, Array<tvm::Tensor>, Graph>
GetScheduleArgs(Graph graph,
const Array<tvm::Tensor> &inputs,
const std::string &target,
int master_idx,
std::string *readable_name,
Array<tvm::Tensor> *outputs) {
// shape, type
// 获取TVM计算函数和TVM调度函数
static auto& fcompute =
nnvm::Op::GetAttr<FTVMCompute>("FTVMCompute");
static auto& fschedule =
nnvm::Op::GetAttr<FTVMSchedule>("FTVMSchedule");
// 获取并设置输入Shape和类型
std::vector<TShape> ishape;
std::vector<int> idtype;
for (const tvm::Tensor t : inputs) {
std::vector<dim_t> shape;
for (Expr v : t->shape) {
CHECK(v.as<tvm::ir::IntImm>());
shape.push_back(v.as<tvm::ir::IntImm>()->value);
}
ishape.emplace_back(TShape(shape.begin(), shape.end()));
idtype.emplace_back(GetTypeFlag(t->dtype));
}
graph = pass::InferShape(graph, ishape);
graph = pass::InferType(graph, idtype);
const ShapeVector& shape_vec = graph.GetAttr<ShapeVector>("shape");
const DTypeVector& dtype_vec = graph.GetAttr<DTypeVector>("dtype");
const IndexedGraph& idx = graph.indexed_graph();
CHECK_EQ(inputs.size(), idx.input_nodes().size());
// 设置输入Tensor
std::vector<tvm::Tensor> tensor_vec(idx.num_node_entries());
for (size_t i = 0; i < idx.input_nodes().size(); ++i) {
uint32_t nid = idx.input_nodes()[i];
tensor_vec[idx.entry_id(nid, 0)] = inputs[i];
}
std::ostringstream readable_name_os;
readable_name_os << "fuse";
for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {
const auto& inode = idx[nid];
if (inode.source->is_variable()) continue;
Array<Tensor> op_inputs, out_info;
readable_name_os << "_" << inode.source->op()->name;
// input array
for (const IndexedGraph::NodeEntry& e : inode.inputs) {
const tvm::Tensor& t = tensor_vec[idx.entry_id(e)];
CHECK(t.defined());
op_inputs.push_back(t);
}
// output hint
for (uint32_t i = 0; i < inode.source->num_outputs(); ++i) {
Array<Expr> shape;
for (int64_t x : shape_vec[idx.entry_id(nid, i)]) {
CHECK_LE(x, static_cast<int64_t>(std::numeric_limits<int>::max()));
shape.push_back(make_const(Int(32), x));
}
out_info.push_back(
placeholder(shape,
GetTVMType(dtype_vec[idx.entry_id(nid, i)])));
}
// 运行一次op,输入数据随机
Array<Tensor> out = fcompute[inode.source->op()](
inode.source->attrs, op_inputs, out_info);
CHECK_EQ(out.size(), inode.source->num_outputs());
// schedule on root node, and use master's schedule
for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) {
uint32_t eid = idx.entry_id(nid, index);
tensor_vec[eid] = out[index];
}
}
// Schedule on final output.
Array<Tensor> all_args = inputs;
Array<Tensor> outs;
for (const IndexedGraph::NodeEntry& e : idx.outputs()) {
const tvm::Tensor& t = tensor_vec[idx.entry_id(e)];
CHECK(t.defined());
outs.push_back(t);
all_args.push_back(t);
}
Schedule sch = fschedule[idx[master_idx].source->op()](
idx[master_idx].source->attrs, outs, target);
// store extra return values
if (readable_name != nullptr) {
*readable_name = readable_name_os.str();
}
if (outputs != nullptr) {
*outputs = outs;
}
return std::make_tuple(sch, all_args, graph);
}
nnvm.compiler.lower
的定义位于tvm/python/tvm/build_module.py
def lower(sch,
args,
name="default_function",
binds=None,
simple_mode=False):
这里先展示tvm.build
的部分代码:
if fdevice:
mdev = codegen.build_module(fdevice, str(target_device))
mhost.import_module(mdev)
return mhost
tvm.build
调用了codegen.build_module
方法,位于tvm/python/tvm/codegen.py
:
from ._ffi.function import _init_api
def build_module(lowered_func, target):
"""Build lowered_func into Module.
Parameters
----------
lowered_func : LoweredFunc
The lowered function
target : str
The target module type.
Returns
-------
module : Module
The corressponding module.
"""
return _Build(lowered_func, target)
codegen._Build
的定义位于tvm/src/api/api_codegen.cc
:
TVM_REGISTER_API("codegen._Build")
.set_body([](TVMArgs args, TVMRetValue *ret) {
if (args[0].IsNodeType<LoweredFunc>()) {
*ret = Build({args[0]}, args[1]);
} else {
*ret = Build(args[0], args[1]);
}
});
runtime::Module::Build
位于tvm/src/codegen/codegen.cc
:
runtime::Module Build(const Array<LoweredFunc>& funcs,
const std::string& target) {
std::string mode = target;
size_t pos = mode.find(' ');
if (pos != std::string::npos) {
mode = mode.substr(0, pos);
}
std::string build_f_name = "codegen.build_" + mode;
// the build function.
const PackedFunc* bf = runtime::Registry::Get(build_f_name);
CHECK(bf != nullptr)
<< "Target " << target << " is not enabled";
runtime::Module m = (*bf)(funcs, target);
return m;
}
因为这里验证的ARM处理器,所以mode为llvm:
codegen.build_llvm
的定义位于tvm/src/codegen/llvm/llvm_module.cc
:
TVM_REGISTER_API("codegen.build_llvm")
.set_body([](TVMArgs args, TVMRetValue* rv) {
std::shared_ptr<LLVMModuleNode> n = std::make_shared<LLVMModuleNode>();
n->Init(args[0], args[1]);
*rv = runtime::Module(n);
});
LLVMModuleNode::Init
的定义位于tvm/src/codegen/llvm/llvm_module.cc
:
void Init(const Array<LoweredFunc>& funcs, std::string target) {
InitializeLLVM();
tm_ = GetLLVMTargetMachine(target);
bool system_lib = (target.find("-system-lib") != std::string::npos);
CHECK_NE(funcs.size(), 0U);
ctx_ = std::make_shared<llvm::LLVMContext>();
std::unique_ptr<CodeGenLLVM> cg = CodeGenLLVM::Create(tm_);
entry_func_ = funcs[0]->name;
cg->Init(funcs[0]->name, tm_, ctx_.get(), system_lib, system_lib);
for (LoweredFunc f : funcs) {
cg->AddFunction(f);
}
cg->AddMainFunction(funcs[0]->name);
module_ = cg->Finish();
module_->addModuleFlag(
llvm::Module::Warning, "tvm_target",
llvm::MDString::get(*ctx_, target));
target_ = target;
mptr_ = module_.get();
}
LLVMModuleNode::Init
函数中和代码生成相关的主要代码调用接口为:
CodeGenLLVM::Create
CodeGenLLVM::Init
CodeGenLLVM::AddFunction
CodeGenLLVM::AddMainFunction
CodeGenLLVM::Finish
/*!
* \brief Compile and add function f to the current module.
* \param f The function to be added.
*/
virtual void AddFunction(const LoweredFunc& f);
CodeGenLLVM::AddFunction
即是负责编译每一个函数并添加到当前module的函数。
CodeGenLLVM::AddFunction
的定义位于tvm/src/codegen/llvm/codegen_llvm.cc
:
void CodeGenLLVM::AddFunction(const LoweredFunc& f) {
this->AddFunctionInternal(f, false);
}
void CodeGenLLVM::AddFunctionInternal(const LoweredFunc& f, bool ret_void) {
this->InitFuncState();
std::vector<llvm::Type*> arg_types;
is_restricted_ = f->is_restricted;
for (Var arg : f->args) {
Type t = arg.type();
if (t.is_handle()) {
auto it = f->handle_data_type.find(arg);
if (it != f->handle_data_type.end()) {
arg_types.push_back(LLVMType((*it).second.type())
->getPointerTo(GetGlobalAddressSpace()));
} else {
arg_types.push_back(t_int8_->getPointerTo(GetGlobalAddressSpace()));
}
if (!is_restricted_) {
alias_var_set_.insert(arg.get());
}
} else {
arg_types.push_back(LLVMType(arg.type()));
}
}
llvm::FunctionType* ftype = llvm::FunctionType::get(
ret_void ? t_void_ : t_int_, arg_types, false);
CHECK(module_->getFunction(f->name) == nullptr)
<< "Function " << f->name << " already exist in module";
function_ = llvm::Function::Create(
ftype, llvm::Function::ExternalLinkage,
f->name, module_.get());
function_->setCallingConv(llvm::CallingConv::C);
function_->setDLLStorageClass(llvm::GlobalValue::DLLStorageClassTypes::DLLExportStorageClass);
// set var map and align information
auto arg_it = function_->arg_begin();
for (size_t i = 0; i < f->args.size(); ++i, ++arg_it) {
llvm::Argument* v = &(*arg_it);
const Var& var = f->args[i];
var_map_[var.get()] = v;
if (is_restricted_) {
if (var.type().is_handle() && !alias_var_set_.count(var.get())) {
// set non alias.
#if TVM_LLVM_VERSION >= 50
function_->addParamAttr(i, llvm::Attribute::NoAlias);
#else
function_->setDoesNotAlias(i + 1);
#endif
}
}
}
llvm::BasicBlock* entry = llvm::BasicBlock::Create(*ctx_, "entry", function_);
builder_->SetInsertPoint(entry);
this->VisitStmt(f->body);
if (ret_void) {
builder_->CreateRetVoid();
} else {
builder_->CreateRet(ConstInt32(0));
}
}
CodeGenLLVM::AddFunctionInternal
函数的主要内部实现细节为: