PyTorch是由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库。
进入PyTorch官网:https://pytorch.org/,选择对应版本进行安装
检验是否安装成功
进入所在的虚拟环境,紧接着输入python
,在输入下面的代码。
import torch
torch.cuda.is_available()
False
这条命令意思是检验是否可以调用cuda,如果我们安装的是CPU版本的话会返回False,能够调用GPU的会返回True。一般这个命令不报错的话就证明安装成功。
查看已经安装好的虚拟环境
conda env list
在深度学习和机器学习中,我们经常会创建不同版本的虚拟环境来满足我们的一些需求。下面我们介绍创建虚拟环境的命令。
conda create -n env_name python==version
conda install package_name
conda remove package_name
conda list
conda remove -n env_name --all
conda activate env_name
conda deactivate
关于更多的命令,我们可以查看Anaconda/miniconda官方提供的命令,官网链接:点击这里
在安装package时,我们经常会使用pip install package_name
和conda install package_name
的命令,但是一些package下载速度会很慢,因此我们需要进行换源,换成国内源,加快我们的下载速度。以下便是两种对应方式的换源
Linux下的换源,我们首先需要在用户目录下新建文件夹.pip
,并且在文件夹内新建文件pip.conf
,具体命令如下
cd ~
mkdir .pip/
vi pip.conf
随后,我们需要在pip.conf
添加下方的内容:
[global]
index-url = http://pypi.douban.com/simple
[install]
use-mirrors =true
mirrors =http://pypi.douban.com/simple/
trusted-host =pypi.douban.com
1、文件管理器文件路径地址栏敲:%APPDATA%
回车,快速进入 C:\Users\电脑用户\AppData\Roaming
文件夹中
2、新建 pip 文件夹并在文件夹中新建 pip.ini
配置文件
3、我们需要在pip.ini
配置文件内容,我们可以选择使用记事本打开,输入以下内容,并按下ctrl+s保存,在这里我们使用的是豆瓣源为例子。
[global]
index-url = http://pypi.douban.com/simple
[install]
use-mirrors =true
mirrors =http://pypi.douban.com/simple/
trusted-host =pypi.douban.com
TUNA 提供了 Anaconda 仓库与第三方源的镜像,各系统都可以通过修改用户目录下的 .condarc
文件。Windows 用户无法直接创建名为 .condarc
的文件,可先执行conda config --set show_channel_urls yes
生成该文件之后再修改。
完成这一步后,我们需要修改C:\Users\User_name\.condarc
这个文件,打开后将文件里原始内容删除,将下面的内容复制进去并保存。
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
这一步完成后,我们需要打开Anaconda Prompt
运行 conda clean -i
清除索引缓存,保证用的是镜像站提供的索引。
在Linux系统下,我们还是需要修改.condarc
来进行换源
cd ~
vi .condarc
在vim
下,我们需要输入i
进入编辑模式,将上方内容粘贴进去,按ESC
退出编辑模式,输入:wq
保存并退出
我们可以通过conda config --show default_channels
检查下是否换源成功
同时,我们仍然需要conda clean -i
清除索引缓存,保证用的是镜像站提供的索引。