一.Pytorch是什么?
Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。作为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了舒适的写代码选择。
二.为什么选择 Pytorch?
1.简洁:
PyTorch的设计追求最少的封装,尽量避免重复造轮子。不像 TensorFlow 中充斥着session、graph、operation、name_scope、variable、tensor、layer等全新的概念,PyTorch 的设计遵循tensor→variable(autograd)→nn.Module 三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),而且这三个抽象之间联系紧密,可以同时进行修改和操作。 简洁的设计带来的另外一个好处就是代码易于理解。PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码十分易于阅读。
2.速度:
PyTorch 的灵活性不以速度为代价,在许多评测中,PyTorch 的速度表现胜过 TensorFlow和Keras 等框架。框架的运行速度和程序员的编码水平有极大关系,但同样的算法,使用PyTorch实现的那个更有可能快过用其他框架实现的。
3.易用:
PyTorch 是所有的框架中面向对象设计的最优雅的一个。PyTorch的面向对象的接口设计来源于Torch,而Torch的接口设计以灵活易用而著称,Keras作者最初就是受Torch的启发才开发了Keras。PyTorch继承了Torch的衣钵,尤其是API的设计和模块的接口都与Torch高度一致。PyTorch的设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法,即所思即所得,不需要考虑太多关于框架本身的束缚。
4.活跃的社区:
PyTorch 提供了完整的文档,循序渐进的指南,作者亲自维护的论坛 供用户交流和求教问题。Facebook 人工智能研究院对 PyTorch 提供了强力支持,作为当今排名前三的深度学习研究机构,FAIR的支持足以确保PyTorch获得持续的开发更新,不至于像许多由个人开发的框架那样昙花一现。
三.PyTorch 的架构是怎样的?
PyTorch(Caffe2) 通过混合前端,分布式训练以及工具和库生态系统实现快速,灵活的实验和高效生产。PyTorch 和 TensorFlow 具有不同计算图实现形式,TensorFlow 采用静态图机制(预定义后再使用),PyTorch采用动态图机制(运行时动态定义)。PyTorch 具有以下高级特征:
四.Pytorch 与 tensorflow 之间的差异在哪里?
上面也将了PyTorch 最大优势是建立的神经网络是动态的, 对比静态的 Tensorflow, 它能更有效地处理一些问题, 比如说 RNN 变化时间长度的输出。各有各的优势和劣势。两者都是大公司发布的, Tensorflow(Google)宣称在分布式训练上下了很大的功夫, 那就默认 Tensorflow 在分布式训练上要超出 Pytorch(Facebook),还有tensorboard可视化工具, 但是 Tensorflow 的静态计算图使得在 RNN 上有一点点被动 (虽然它用其他途径解决了), 不过用 PyTorch 的时候, 会对这种动态的 RNN 有更好的理解。而且 Tensorflow 的高度工业化, 它的底层代码很难看懂, Pytorch 好那么一点点, 如果深入 PytorchAPI, 至少能比看 Tensorflow 多看懂一点点 Pytorch 的底层在干啥。
五.Pytorch有哪些常用工具包?
到此这篇关于pytorch简介的文章就介绍到这了,更多相关pytorch简介内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!
主要内容:PyTorch功能特征,PyTorch的优点,TensorFlow与PyTorch比较PyTorch是一个Python的开源机器学习库。它用于自然语言处理等应用程序。它最初由Facebook人工智能研究小组开发,而优步的Pyro软件则用于概率编程。 最初,PyTorch由Hugh Perkins开发,作为基于Torch框架的LusJIT的Python包装器。有两种PyTorch变种。 PyTorch在Python中重新设计和实现Torch,同时为后端代码共享相同的核心C库。PyTo
主要内容:训练模型Convents就是从 scratch 构建CNN模型。网络架构将包含以下步骤的组合 - Conv2d MaxPool2d 整流线性单元 视图 线性层 训练模型 训练模型与图像分类问题相同。以下代码段完成了对提供的数据集的训练模型的过程 - 此方法包括用于训练和验证的不同逻辑。使用不同模式有两个主要原因 - 在训练模式中,丢失会删除一定百分比的值,这在验证或测试阶段不应发生。 对于训练模式,计算梯
我正在学习pytorch,并试图将网络训练为异或门。一切运行顺利,但就是不学习。它确实改变了它的权重,但是它会收敛到超出预期结果的每一个输入的结果中。 我尝试了许多学习率和权重初始化。 因此,输入是A和B门,如果两者相等,则返回1,否则返回0,如下所示: 这是我对模型建模和训练的尝试: 这是一次以0.001学习率进行100000次迭代的运行: 我真的迷路了。这不管用吗?
PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能: 强大的 GPU 加速 Tensor 计算(类似 numpy) 构建基于 tape 的自动升级系统上的深度神经网络 你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。 在粒度级别上,PyTorch 是一个由以下组件组成的库: 通常使
译者:YAOKE7 Torch张量库介绍 深度学习的所有计算都是在张量上进行的,其中张量是一个可以被超过二维索引的矩阵的一般表示形式。稍后我们将详细讨论这意味着什么。首先,我们先来看一下我们可以用张量来干什么。 # 作者: Robert Guthrie import torch import torch.autograd as autograd import torch.nn as nn imp
Torch Geometry 是基于 PyTorch 的计算机视觉库,用于解决通用计算机几何数学问题。该库基于 PyTorch ,用于提高定义反向模式自动微分(reverse-mode auto-differentiation)和计算复杂函数梯度。