LightningModule将PyTorch代码整理成5个部分:
所需要的方法:
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
使用下面的代码进行训练:
train_loader = DataLoader(MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()))
trainer = pl.Trainer()
model = LitModel()
trainer.fit(model, train_loader)
使用training_step方法来增加training loop
class LitClassifier(pl.LightningModule):
def __init__(self, model):
super().__init__()
self.model = model
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
return loss
如果需要在epoch-level进行度量,并进行记录,可以使用*.log*方法
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
# logs metrics for each training_step,
# and the average across the epoch, to the progress bar and logger
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
如果需要对每个training_step的输出做一些操作,可以通过改写training_epoch_end来实现
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
preds = ...
return {'loss': loss, 'other_stuff': preds}
def training_epoch_end(self, training_step_outputs):
for pred in training_step_outputs:
# do something
如果需要对每个batch分配到不同GPU上进行训练,可以采用training_step_end方法来实现
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
pred = ...
return {'loss': loss, 'pred': pred}
def training_step_end(self, batch_parts):
gpu_0_prediction = batch_parts.pred[0]['pred']
gpu_1_prediction = batch_parts.pred[1]['pred']
# do something with both outputs
return (batch_parts[0]['loss'] + batch_parts[1]['loss']) / 2
def training_epoch_end(self, training_step_outputs):
for out in training_step_outputs:
# do something with preds
增加一个validation loop,可以通过改写LightningModule中的validation_step来实现
class LitModel(pl.LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
self.log('val_loss', loss)
对validation进行epoch-level度量,可以通过改写validation_epoch_end实现
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
pred = ...
return pred
def validation_epoch_end(self, validation_step_outputs):
for pred in validation_step_outputs:
# do something with a pred
如果需要validation进行数据并行计算(多GPU),可以通过validation_step_end方法实现
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
pred = ...
return {'loss': loss, 'pred': pred}
def validation_step_end(self, batch_parts):
gpu_0_prediction = batch_parts.pred[0]['pred']
gpu_1_prediction = batch_parts.pred[1]['pred']
# do something with both outputs
return (batch_parts[0]['loss'] + batch_parts[1]['loss']) / 2
def validation_epoch_end(self, validation_step_outputs):
for out in validation_step_outputs:
# do something with preds
增加一个test loop的过程和上面增加validation loop是相同的,唯一不同的是,只有在使用*.test()*的时候,test loop才会被调用
model = Model()
trainer = Trainer()
trainer.fit()
# automatically loads the best weights for you
trainer.test(model)
这里,有两种方式调用test():
# call after training
trainer = Trainer()
trainer.fit(model)
# automatically auto-loads the best weights
trainer.test(test_dataloaders=test_dataloader)
# or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model, test_dataloaders=test_dataloader)
对于研究,LightningModules像系统一样结构化
import pytorch_lightning as pl
import torch
from torch import nn
class Autoencoder(pl.LightningModule):
def __init__(self, latent_dim=2):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 256), nn.ReLU(), nn.Linear(256, latent_dim))
self.decoder = nn.Sequential(nn.Linear(latent_dim, 256), nn.ReLU(), nn.Linear(256, 28 * 28))
def training_step(self, batch, batch_idx):
x, _ = batch
# encode
x = x.view(x.size(0), -1)
z = self.encoder(x)
# decode
recons = self.decoder(z)
# reconstruction
reconstruction_loss = nn.functional.mse_loss(recons, x)
return reconstruction_loss
def validation_step(self, batch, batch_idx):
x, _ = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
recons = self.decoder(z)
reconstruction_loss = nn.functional.mse_loss(recons, x)
self.log('val_reconstruction', reconstruction_loss)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.0002)
可以用如下方式训练
autoencoder = Autoencoder()
trainer = pl.Trainer(gpus=1)
trainer.fit(autoencoder, train_dataloader, val_dataloader)
lightning inference部分的方法:
注意到在这个例子中,train loop和val loop完全相同,我们可以重复使用这部分代码
class Autoencoder(pl.LightningModule):
def __init__(self, latent_dim=2):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 256), nn.ReLU(), nn.Linear(256, latent_dim))
self.decoder = nn.Sequential(nn.Linear(latent_dim, 256), nn.ReLU(), nn.Linear(256, 28 * 28))
def training_step(self, batch, batch_idx):
loss = self.shared_step(batch)
return loss
def validation_step(self, batch, batch_idx):
loss = self.shared_step(batch)
self.log('val_loss', loss)
def shared_step(self, batch):
x, _ = batch
# encode
x = x.view(x.size(0), -1)
z = self.encoder(x)
# decode
recons = self.decoder(z)
# loss
return nn.functional.mse_loss(recons, x)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.0002)
注:我们创建了所有loop都可以使用的一个新方法shared_step,这个方法的名字可以任意取
如果需要进行系统推断,可以将forward方法加入到LightningModule中
class Autoencoder(pl.LightningModule):
def forward(self, x):
return self.decoder(x)
在复杂系统中增加forward的优势,使得可以进行包含inference procedure等
class Seq2Seq(pl.LightningModule):
def forward(self, x):
embeddings = self(x)
hidden_states = self.encoder(embeddings)
for h in hidden_states:
# decode
...
return decoded
在LightningModule中迭代不同的模型
import pytorch_lightning as pl
from pytorch_lightning.metrics import functional as FM
class ClassificationTask(pl.LightningModule):
def __init__(self, model):
super().__init__()
self.model = model
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = F.cross_entropy(y_hat, y)
acc = FM.accuracy(y_hat, y)
# loss is tensor. The Checkpoint Callback is monitoring 'checkpoint_on'
metrics = {'val_acc': acc, 'val_loss': loss}
self.log_dict(metrics)
return metrics
def test_step(self, batch, batch_idx):
metrics = self.validation_step(batch, batch_idx)
metrics = {'test_acc': metrics['val_acc'], 'test_loss': metrics['val_loss']}
self.log_dict(metrics)
def configure_optimizers(self):
return torch.optim.Adam(self.model.parameters(), lr=0.02)
然后将任意适合该task的模型传进去
for model in [resnet50(), vgg16(), BidirectionalRNN()]:
task = ClassificationTask(model)
trainer = Trainer(gpus=2)
trainer.fit(task, train_dataloader, val_dataloader)
tasks可以任意复杂,比如,可以实现GAN训练,self-supervised,甚至RL
class GANTask(pl.LightningModule):
def __init__(self, generator, discriminator):
super().__init__()
self.generator = generator
self.discriminator = discriminator
...
del)
trainer = Trainer(gpus=2)
trainer.fit(task, train_dataloader, val_dataloader)
tasks可以任意复杂,比如,可以实现GAN训练,self-supervised,甚至RL
```python
class GANTask(pl.LightningModule):
def __init__(self, generator, discriminator):
super().__init__()
self.generator = generator
self.discriminator = discriminator
...