当前位置: 首页 > 工具软件 > Lite XL > 使用案例 >

Transformer家族3 -- 计算效率优化(Adaptive-Span、Reformer、Lite-Transformer)

陆臻
2023-12-01


系列文章,请多关注
Transformer家族1 – Transformer详解和源码分析
Transformer家族2 – 编码长度优化(Transformer-XL、Longformer)
Transformer家族3 – 计算效率优化(Adaptive-Span、Reformer、Lite-Transformer)
Transformer家族4 – 通用性优化(Universal-Transformer)
Transformer家族5 – 推理加速(Faster-Transformer、TurboTransformers)
NLP预训练模型1 – 综述

1 背景

上文我们从编码长度优化的角度,分析了如何对Transformer进行优化。Transformer-XL、LongFormer等模型,通过片段递归和attention稀疏化等方法,将长文本编码能力提升到了很高的高度。基本已经克服了Transfor

 类似资料: