首先如果要求出最优解长度,实际上就是类似 L C S LCS LCS的做法,只是 L C S LCS LCS只保留公共部分作为答案,那么本题只需保存一下非公共的部分:
设 d [ i ] [ j ] d[i][j] d[i][j]表示字符串 s 1 s_1 s1判断到位置 i i i,字符串 s 2 s_2 s2判断到 j j j时的最短串的长度,边界是 d [ i ] [ 0 ] = d [ 0 ] [ i ] = i d[i][0]=d[0][i]=i d[i][0]=d[0][i]=i,那么有:
如果 s 1 [ i − 1 ] = = s 2 [ j − 1 ] s_1[i-1]==s_2[j-1] s1[i−1]==s2[j−1],有 d [ i ] [ j ] = d [ i − 1 ] [ j − 1 ] + 1 d[i][j]=d[i-1][j-1]+1 d[i][j]=d[i−1][j−1]+1;否则 d [ i ] [ j ] = m i n ( d [ i − 1 ] [ j ] , d [ i ] [ j − 1 ] ) + 1 d[i][j]=min(d[i-1][j],d[i][j-1])+1 d[i][j]=min(d[i−1][j],d[i][j−1])+1
那么该如何处理解的个数呢?这个稍微有点难想,参考了洛谷大佬的题解
设 f [ i ] [ j ] f[i][j] f[i][j]表示字符串 s 1 s_1 s1判断到位置 i i i,字符串 s 2 s_2 s2判断到 j j j时的最短串的个数
边界为 f [ i ] [ 0 ] = f [ 0 ] [ i ] = 1 f[i][0]=f[0][i]=1 f[i][0]=f[0][i]=1,即只看单个串,那么每个子串都作为一个解
转移过程为:
最后,最短串长度为 d [ n ] [ m ] d[n][m] d[n][m],解的个数为 f [ n ] [ m ] f[n][m] f[n][m]
注意使用getline读入,因为可能读入空串
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <cstdio>
#include <string>
#include <bitset>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define lowbit(x) (x&(-x))
#define mkp(x,y) make_pair(x,y)
#define mem(a,x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int,int> P;
const double eps=1e-8;
const double pi=acos(-1.0);
const int inf=0x3f3f3f3f;
const ll INF=1e18;
const int Mod=1e9+7;
const int maxn=2e5+10;
int t,kase=0;
int d[55][55],f[55][55];
string s1,s2;
int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin>>t;
cin.ignore();
while(t--){
getline(cin,s1);
getline(cin,s2);
memset(d,0,sizeof d);
memset(f,0,sizeof f);
int m=max(s1.size(),s2.size());
for(int i=0;i<=m;i++){
d[i][0]=d[0][i]=i;
f[i][0]=f[0][i]=1;
}
int n=s1.size();
m=s2.size();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(s1[i-1]==s2[j-1]){
d[i][j]=d[i-1][j-1]+1;
f[i][j]=f[i-1][j-1];
}else{
d[i][j]=min(d[i-1][j],d[i][j-1])+1;
if(d[i-1][j]>d[i][j-1]) f[i][j]=f[i][j-1];
else if(d[i-1][j]<d[i][j-1]) f[i][j]=f[i-1][j];
else f[i][j]=f[i-1][j]+f[i][j-1];
}
}
cout<<"Case #"<<++kase<<": "<<d[n][m]<<" "<<f[n][m]<<"\n";
}
return 0;
}