当前位置: 首页 > 工具软件 > H2O > 使用案例 >

h2o api java_h2o 准备

訾朗
2023-12-01

首先,你需要下载R,下载python,之后还需要加载java。然后你可以在R中使用

install.packages(h2o) 进行安装h2o,之后就是library(h2o),然后初始化h2o平台h2o.init()

你也可以在python中安装h2o:

pip install - U h2o

import h2o

h2o.init()

做一个简短的开始

h2o.init()

irish2o % filter(Species !='setosa'))

y

x

parts

train

test

----------------------------------------------------------------------

Your next step is to start H2O:

> h2o.init()

For H2O package documentation, ask for help:

> ??h2o

After starting H2O, you can use the Web UI at http://localhost:54321

For more information visit http://docs.h2o.ai

----------------------------------------------------------------------

载入程辑包:‘h2o’

The following objects are masked from ‘package:stats’:

cor, sd, var

The following objects are masked from ‘package:base’:

&&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,

colnames

log, log10, log1p, log2, round, signif, trunc

> h2o.init()

H2O is not running yet, starting it now...

Note: In case of errors look at the following log files:

/var/folders/jz/qf7zhsc97f71slzzf59mvs2w0000gn/T//RtmpujsoRp/h2o_milin_started_from_r.out

/var/folders/jz/qf7zhsc97f71slzzf59mvs2w0000gn/T//RtmpujsoRp/h2o_milin_started_from_r.err

java version "10.0.1" 2018-04-17

Java(TM) SE Runtime Environment 18.3 (build 10.0.1+10)

Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10.0.1+10, mixed mode)

Starting H2O JVM and connecting: ... Connection successful!

R is connected to the H2O cluster:

H2O cluster uptime: 3 seconds 560 milliseconds

H2O cluster timezone: Asia/Shanghai

H2O data parsing timezone: UTC

H2O cluster version: 3.20.0.8

H2O cluster version age: 1 month and 20 days

H2O cluster name: H2O_started_from_R_milin_jhc047

H2O cluster total nodes: 1

H2O cluster total memory: 2.00 GB

H2O cluster total cores: 4

H2O cluster allowed cores: 4

H2O cluster healthy: TRUE

H2O Connection ip: localhost

H2O Connection port: 54321

H2O Connection proxy: NA

H2O Internal Security: FALSE

H2O API Extensions: XGBoost, Algos, AutoML, Core V3, Core V4

R Version: R version 3.4.3 (2017-11-30)

m

|=============================================================| 100%

> m

Model Details:

==============

H2OBinomialModel: drf

Model ID: DRF_model_R_1541858573921_1

Model Summary:

number_of_trees number_of_internal_trees model_size_in_bytes

1 50 50 6827

min_depth max_depth mean_depth min_leaves max_leaves mean_leaves

1 2 5 3.34000 3 10 5.88000

H2OBinomialMetrics: drf

** Reported on training data. **

** Metrics reported on Out-Of-Bag training samples **

MSE: 0.05615946

RMSE: 0.2369799

LogLoss: 0.2136178

Mean Per-Class Error: 0.05441176

AUC: 0.9779412

Gini: 0.9558824

Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:

versicolor virginica Error Rate

versicolor 38 2 0.050000 =2/40

virginica 2 32 0.058824 =2/34

Totals 40 34 0.054054 =4/74

Maximum Metrics: Maximum metrics at their respective thresholds

metric threshold value idx

1 max f1 0.476190 0.941176 30

2 max f2 0.260952 0.953757 33

3 max f0point5 0.937500 0.966667 25

4 max accuracy 0.476190 0.945946 30

5 max precision 1.000000 1.000000 0

6 max recall 0.004662 1.000000 49

7 max specificity 1.000000 1.000000 0

8 max absolute_mcc 0.476190 0.891176 30

9 max min_per_class_accuracy 0.476190 0.941176 30

10 max mean_per_class_accuracy 0.476190 0.945588 30

Gains/Lift Table: Extract with `h2o.gainsLift(, )` or `h2o.gainsLift(, valid=, xval=)`

> p

|=============================================================| 100%

> p

predict versicolor virginica

1 versicolor 0.9679487 0.032051282

2 versicolor 0.8779487 0.122051282

3 versicolor 0.9979487 0.002051282

4 versicolor 0.9679487 0.032051282

5 versicolor 0.9979487 0.002051282

6 versicolor 0.9979487 0.002051282

[26 rows x 3 columns]

>

performance Versus Predictions

h2o.performance(m,test)

H2OMultinomialMetrics: drf

Test Set Metrics:

=====================

MSE: (Extract with `h2o.mse`) 0.08837984

RMSE: (Extract with `h2o.rmse`) 0.2972875

Logloss: (Extract with `h2o.logloss`) 0.2452472

Mean Per-Class Error: 0.1623932

Confusion Matrix: Extract with `h2o.confusionMatrix(, )`)

=========================================================================

Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

setosa versicolor virginica Error Rate

setosa 6 0 0 0.0000 = 0 / 6

versicolor 0 11 2 0.1538 = 2 / 13

virginica 0 3 6 0.3333 = 3 / 9

Totals 6 14 8 0.1786 = 5 / 28

Hit Ratio Table: Extract with `h2o.hit_ratio_table(, )`

=======================================================================

Top-3 Hit Ratios:

k hit_ratio

1 1 0.821429

2 2 1.000000

3 3 1.000000

>

h2o flow

h2o flow 是h2o 的一个网页的接口,你可以直接上传或者下载数据,你可以查看你所建立的所有模型,你可以直接的创建模型,也可以直接的进行预测。

有几种方式打开h2o flow ,首先,第一种是在你的R或者python中初始化h2o,然后在你的网页打开:http://127.0.0.1:54321

另外一种是你要在服务器部署h2o,然后打开

1.Download H2O. This is a zip file that contains everything you need to get started.

2.

cd ~/Downloads

unzip h2o-3.22.0.1.zip

cd h2o-3.22.0.1

java -jar h2o.jar

3. Point your browser to [http://你的主机地址:54321]

 类似资料: