Game Theory 博弈论

施琦
2023-12-01

博弈论 http://www.math.ucla.edu/~tom/Game_Theory/Contents.html

第一章前四节在ACM的博弈论问题中应该算是比较基础的,杭电的刘春英老师的课件上就是讲的这个,下面的资料是更全面,具体,包括公式的证明和相关模型的介绍

—————————————————————————————————————————————————————————————————————————

Game Theory

Thomas S. Ferguson
Mathematics Department, UCLA


Introduction.

Part I: Impartial Combinatorial Games.

  1. Take-Away Games.
  2. The Game of Nim.
  3. Graph Games.
  4. Sums of Combinatorial Games.
  5. Coin Turning Games.
  6. Green Hackenbush.

Part II: Two-Person Zero-Sum Games.

  1. The Strategic Form of a Game.
  2. Matrix Games. Domination.
  3. The Principle of Indifference.
  4. Solving Finite Games.
  5. The Extensive Form of a Game.
  6. Recursive and Stochastic Games.
  7. Continuous Poker Models.

Part III: Two-Person General-Sum Games.

  1. Bimatrix Games -- Safety Levels.
  2. Noncooperative Games -- Equilibria.
  3. Models of Duopoly.
  4. Cooperative Games.

Part IV: Games in Coalitional Form.

  1. Many-Person TU Games.
  2. Imputations and the Core.
  3. The Shapley Value.
  4. The Nucleolus.

Appendix.

  1. Utility Theory.
  2. Contraction Maps and Fixed Points.
  3. Existence of Equilibria in Finite Games.
 类似资料: