形如 max 1 < x < 100 f ( x ) \max \limits_{1<x<100}f(x) 1<x<100maxf(x) 中的 1<x<100 ,或者 ∑ n = 0 N − 1 \sum\limits_{n=0}^{N-1} n=0∑N−1中的 n = 0 n=0 n=0和 N − 1 N-1 N−1这种,总之是位于正上或者正下方的标记,语法格式是
\limts_{底标}^{顶标}
例:
\max\limits_{1<x<100}f(x) ⇒ max 1 < x < 100 f ( x ) \Rightarrow \max\limits_{1<x<100}f(x) ⇒1<x<100maxf(x)
\sum\limits_{n=0}^{N-1} ⇒ ∑ n = 0 N − 1 \Rightarrow \sum\limits_{n=0}^{N-1} ⇒n=0∑N−1
规律:“_”后接下标,“^”后接上标,这个和角标的规律一样,且不分先后顺序。
语法格式:
\frac{分子}{分母}
例:
\frac{z}{z-a} ⇒ z z − a \quad\Rightarrow\frac{z}{z-a} ⇒z−az
\frac{1}{12} ⇒ 1 12 \quad\Rightarrow\frac{1}{12} ⇒121
nbsp nbsp nbsp \\
emsp emsp emsp \\ 
nbsp nbsp nbsp
emsp emsp emsp
\begin{matrix}
abcdefg & hyjklmn& opq \
rst & uvw& xyz \
\end{matrix} \tag{1}
a b c d e f g h y j k l m n o p q r s t u v w x y z \begin{matrix} abcdefg & hyjklmn& opq \\ rst & uvw& xyz \\ \end{matrix} abcdefgrsthyjklmnuvwopqxyz
\begin{aligned}
f(x)&=\tfrac{1}{12} \cdot r, & g(x) &= \tfrac{1}{24} \cdot x, & x&<12 \
f(x)&=1, &g(x) &= \tfrac{1}{8} \cdot x - 1, & 12 &\le x < 16 \
f(x)&=1, &g(x) &= 1, & x &\ge 16
\end{aligned}
f ( x ) = 1 12 ⋅ r , g ( x ) = 1 24 ⋅ x , x < 12 f ( x ) = 1 , g ( x ) = 1 8 ⋅ x − 1 , 12 ≤ x < 16 f ( x ) = 1 , g ( x ) = 1 , x ≥ 16 \begin{aligned} f(x)&=\tfrac{1}{12} \cdot r, & g(x) &= \tfrac{1}{24} \cdot x, & x&<12 \\ f(x)&=1, &g(x) &= \tfrac{1}{8} \cdot x - 1, & 12 &\le x < 16 \\ f(x)&=1, &g(x) &= 1, & x &\ge 16 \end{aligned} f(x)f(x)f(x)=121⋅r,=1,=1,g(x)g(x)g(x)=241⋅x,=81⋅x−1,=1,x12x<12≤x<16≥16
\begin{aligned}
x(n) &= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\
X(k)& = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\
\end{aligned}\
\left{\begin{aligned}
Re[X(k)] &= DFT[x_{ep}(n)] &X_{ep}(k) &= DFT[x_r(n)] \
jIm[X(k)] &= DFT[x_{op}(n)]&X_{op}(k) &= DFT[jx_i(n)]\
\end{aligned}\right.
x ( n ) = x e p ( n ) + x o p ( n ) = x r ( n ) + j x i ( n ) X ( k ) = R e [ X ( k ) ] + j I m [ X ( k ) ] = X e p [ X ( k ) ] + X o p [ X ( k ) ] { R e [ X ( k ) ] = D F T [ x e p ( n ) ] X e p ( k ) = D F T [ x r ( n ) ] j I m [ X ( k ) ] = D F T [ x o p ( n ) ] X o p ( k ) = D F T [ j x i ( n ) ] \begin{aligned} x(n) &= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\\ X(k)& = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\\ \end{aligned}\\ \left\{\begin{aligned} Re[X(k)] &= DFT[x_{ep}(n)] &X_{ep}(k) &= DFT[x_r(n)] \\ jIm[X(k)] &= DFT[x_{op}(n)]&X_{op}(k) &= DFT[jx_i(n)]\\ \end{aligned}\right. x(n)X(k)=xep(n)+xop(n)=xr(n)+jxi(n)=Re[X(k)]+jIm[X(k)]=Xep[X(k)]+Xop[X(k)]{Re[X(k)]jIm[X(k)]=DFT[xep(n)]=DFT[xop(n)]Xep(k)Xop(k)=DFT[xr(n)]=DFT[jxi(n)]