当前位置: 首页 > 工具软件 > Markdown UI > 使用案例 >

【Markdown】

楚羽
2023-12-01
底标和顶标

形如 max ⁡ 1 &lt; x &lt; 100 f ( x ) \max \limits_{1&lt;x&lt;100}f(x) 1<x<100maxf(x) 中的 1<x<100 ,或者 ∑ n = 0 N − 1 \sum\limits_{n=0}^{N-1} n=0N1中的 n = 0 n=0 n=0 N − 1 N-1 N1这种,总之是位于正上或者正下方的标记,语法格式是

\limts_{底标}^{顶标}
例:
\max\limits_{1<x<100}f(x) ⇒ max ⁡ 1 &lt; x &lt; 100 f ( x ) \Rightarrow \max\limits_{1&lt;x&lt;100}f(x) 1<x<100maxf(x)
\sum\limits_{n=0}^{N-1} ⇒ ∑ n = 0 N − 1 \Rightarrow \sum\limits_{n=0}^{N-1} n=0N1

规律:“_”后接下标,“^”后接上标,这个和角标的规律一样,且不分先后顺序。

分数

语法格式:

\frac{分子}{分母}
例:
\frac{z}{z-a} ⇒ z z − a \quad\Rightarrow\frac{z}{z-a} zaz
\frac{1}{12} ⇒ 1 12 \quad\Rightarrow\frac{1}{12} 121

空格

nbsp&nbsp;nbsp&nbsp;nbsp \\&nbsp;
emsp&emsp;emsp&emsp;emsp \\&emsp;

nbsp nbsp nbsp
emsp emsp emsp

矩阵

\begin{matrix}
abcdefg & hyjklmn& opq \
rst & uvw& xyz \
\end{matrix} \tag{1}

a b c d e f g h y j k l m n o p q r s t u v w x y z \begin{matrix} abcdefg &amp; hyjklmn&amp; opq \\ rst &amp; uvw&amp; xyz \\ \end{matrix} abcdefgrsthyjklmnuvwopqxyz

\begin{aligned}
f(x)&=\tfrac{1}{12} \cdot r, & g(x) &= \tfrac{1}{24} \cdot x, & x&<12 \
f(x)&=1, &g(x) &= \tfrac{1}{8} \cdot x - 1, & 12 &\le x < 16 \
f(x)&=1, &g(x) &= 1, & x &\ge 16
\end{aligned}

f ( x ) = 1 12 ⋅ r , g ( x ) = 1 24 ⋅ x , x &lt; 12 f ( x ) = 1 , g ( x ) = 1 8 ⋅ x − 1 , 12 ≤ x &lt; 16 f ( x ) = 1 , g ( x ) = 1 , x ≥ 16 \begin{aligned} f(x)&amp;=\tfrac{1}{12} \cdot r, &amp; g(x) &amp;= \tfrac{1}{24} \cdot x, &amp; x&amp;&lt;12 \\ f(x)&amp;=1, &amp;g(x) &amp;= \tfrac{1}{8} \cdot x - 1, &amp; 12 &amp;\le x &lt; 16 \\ f(x)&amp;=1, &amp;g(x) &amp;= 1, &amp; x &amp;\ge 16 \end{aligned} f(x)f(x)f(x)=121r,=1,=1,g(x)g(x)g(x)=241x,=81x1,=1,x12x<12x<1616

\begin{aligned}
x(n) &= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\
X(k)& = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\
\end{aligned}\
\left{\begin{aligned}
Re[X(k)] &= DFT[x_{ep}(n)] &X_{ep}(k) &= DFT[x_r(n)] \
jIm[X(k)] &= DFT[x_{op}(n)]&X_{op}(k) &= DFT[jx_i(n)]\
\end{aligned}\right.

x ( n ) = x e p ( n ) + x o p ( n ) = x r ( n ) + j x i ( n ) X ( k ) = R e [ X ( k ) ] + j I m [ X ( k ) ] = X e p [ X ( k ) ] + X o p [ X ( k ) ] { R e [ X ( k ) ] = D F T [ x e p ( n ) ] X e p ( k ) = D F T [ x r ( n ) ] j I m [ X ( k ) ] = D F T [ x o p ( n ) ] X o p ( k ) = D F T [ j x i ( n ) ] \begin{aligned} x(n) &amp;= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\\ X(k)&amp; = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\\ \end{aligned}\\ \left\{\begin{aligned} Re[X(k)] &amp;= DFT[x_{ep}(n)] &amp;X_{ep}(k) &amp;= DFT[x_r(n)] \\ jIm[X(k)] &amp;= DFT[x_{op}(n)]&amp;X_{op}(k) &amp;= DFT[jx_i(n)]\\ \end{aligned}\right. x(n)X(k)=xep(n)+xop(n)=xr(n)+jxi(n)=Re[X(k)]+jIm[X(k)]=Xep[X(k)]+Xop[X(k)]{Re[X(k)]jIm[X(k)]=DFT[xep(n)]=DFT[xop(n)]Xep(k)Xop(k)=DFT[xr(n)]=DFT[jxi(n)]

 类似资料: