opencv4.1.0+darknet安装配置
之前由于各种原因没有安装好opencv,无法配置darknet。今天各种google终于解决了问题,遂小记一手
opencv安装
在官网上下载opencv的发行版,这里以4.1.0为例
首先安装依赖项
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
下载安装包
git clone https://github.com/opencv/opencv.git
cd opencv
mkdir build
cd build
接下来就是编译,这时坑来了,一定注意camke的选项,按照以下代码运行
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_GENERATE_PKGCONFIG=ON
最后一项会生成opencv.pc,很关键
然后
make -j6
sudo make install
此时opencv已经安装完成,在/usr/local/lib/pkgconfig文件夹下会生成opencv4.pc文件,将其克隆到/usr/lib/pkgconfig
cp /usr/local/lib/pkgconfig/opencv4.pc /usr/lib/pkgconfig
//重命名为opencv.pc mv opencv4.pc opencv.pc
opencv的配置就完成了
darknet安装
yolo官网下载darknet
git clone https://github.com/pjreddie/darknet
cd darknet
打开makefile,修改前几行为
GPU=1
CUDNN=1//如果已经安装
OPENCV=1
然后make,如果之前opencv.pc没有配置好的话,会出现‘fatal error: opencv2/opencv.hpp:
没有那个文件或目录‘的错误。此时会出现 ./src/image_opencv.cpp:12:1: error: ‘IplImage’
does not name a type; did you mean ‘image’? 各方google后终于找到解决方案
cd darknet/src
在src文件夹下查找错误里的image_opencv.cpp,修改以下两个函数,注释里的是原始代码,确保你的文件里的这两个函数函数和以下一致
Mat image_to_mat(image im)
{
image copy = copy_image(im);
constrain_image(copy);
if(im.c == 3) rgbgr_image(copy);
Mat m(cv::Size(im.w,im.h), CV_8UC(im.c));
int x,y,c;
int step = m.step;
for(y = 0; y < im.h; ++y){
for(x = 0; x < im.w; ++x){
for(c= 0; c < im.c; ++c){
float val = im.data[c*im.h*im.w + y*im.w + x];
m.data[y*step + x*im.c + c] = (unsigned char)(val*255);
}
}
}
free_image(copy);
return m;
// free_image(copy);
// return m;
// IplImage *ipl = image_to_ipl(copy);
// Mat m = cvarrToMat(ipl, true);
// cvReleaseImage(&ipl);
// free_image(copy);
// return m;
}
image mat_to_image(Mat m)
{
int h = m.rows;
int w = m.cols;
int c = m.channels();
image im = make_image(w, h, c);
unsigned char *data = (unsigned char *)m.data;
int step = m.step;
int i, j, k;
for(i = 0; i < h; ++i){
for(k= 0; k < c; ++k){
for(j = 0; j < w; ++j){
im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;
}
}
}
rgbgr_image(im);
return im;
// IplImage ipl = m;
// image im = ipl_to_image(&ipl);
// rgbgr_image(im);
// return im;
}
同时删除所有含有IplImage的函数,保存,重新make,会出现 error: ‘CV_CAP_PROP_FRAME_WIDTH’ was
not declared in this scope
这是由于opencv的版本问题,现在已经没有CV_的前缀了,所以将image_opencv.cpp里所有大写的,含有CV_前缀的变量的前缀删掉,如上面的变量修改后为CAP_PROP_FRAME_WIDTH。保存,重新make,成功!
下面附上我的image_opencv.cpp文件全部代码,如果觉得修改麻烦可以直接复制
#ifdef OPENCV
#include "stdio.h"
#include "stdlib.h"
#include "opencv2/opencv.hpp"
#include "image.h"
using namespace cv;
extern "C" {
Mat image_to_mat(image im)
{
image copy = copy_image(im);
constrain_image(copy);
if(im.c == 3) rgbgr_image(copy);
Mat m(cv::Size(im.w,im.h), CV_8UC(im.c));
int x,y,c;
int step = m.step;
for(y = 0; y < im.h; ++y){
for(x = 0; x < im.w; ++x){
for(c= 0; c < im.c; ++c){
float val = im.data[c*im.h*im.w + y*im.w + x];
m.data[y*step + x*im.c + c] = (unsigned char)(val*255);
}
}
}
free_image(copy);
return m;
}
image mat_to_image(Mat m)
{
int h = m.rows;
int w = m.cols;
int c = m.channels();
image im = make_image(w, h, c);
unsigned char *data = (unsigned char *)m.data;
int step = m.step;
int i, j, k;
for(i = 0; i < h; ++i){
for(k= 0; k < c; ++k){
for(j = 0; j < w; ++j){
im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;
}
}
}
rgbgr_image(im);
return im;
}
void *open_video_stream(const char *f, int c, int w, int h, int fps)
{
VideoCapture *cap;
if(f) cap = new VideoCapture(f);
else cap = new VideoCapture(c);
if(!cap->isOpened()) return 0;
if(w) cap->set(CAP_PROP_FRAME_WIDTH, w);
if(h) cap->set(CAP_PROP_FRAME_HEIGHT, w);
if(fps) cap->set(CAP_PROP_FPS, w);
return (void *) cap;
}
image get_image_from_stream(void *p)
{
VideoCapture *cap = (VideoCapture *)p;
Mat m;
*cap >> m;
if(m.empty()) return make_empty_image(0,0,0);
return mat_to_image(m);
}
image load_image_cv(char *filename, int channels)
{
int flag = -1;
if (channels == 0) flag = -1;
else if (channels == 1) flag = 0;
else if (channels == 3) flag = 1;
else {
fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
}
Mat m;
m = imread(filename, flag);
if(!m.data){
fprintf(stderr, "Cannot load image \"%s\"\n", filename);
char buff[256];
sprintf(buff, "echo %s >> bad.list", filename);
system(buff);
return make_image(10,10,3);
//exit(0);
}
image im = mat_to_image(m);
return im;
}
int show_image_cv(image im, const char* name, int ms)
{
Mat m = image_to_mat(im);
imshow(name, m);
int c = waitKey(ms);
if (c != -1) c = c%256;
return c;
}
void make_window(char *name, int w, int h, int fullscreen)
{
namedWindow(name, WINDOW_NORMAL);
if (fullscreen) {
setWindowProperty(name, WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
} else {
resizeWindow(name, w, h);
if(strcmp(name, "Demo") == 0) moveWindow(name, 0, 0);
}
}
}
#endif
使用以下命令测试yolo,前提你已经在官网下载了yolov3.weight放在darknet文件夹中
> wget https://pjreddie.com/media/files/yolov3.weights
打开cfg文件夹下的yolov3.cfg,修改前几行,如下
> Testing batch=1 subdivisions=1
> Training
> batch=64
> subdivisions=16 1 2 3 4 5 6
保存退出,运行
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
摄像头实时检测
./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 2
使用-c来设置使用的摄像头的编号