操作系统:Ubuntu18.04
ROS版本:Melodic
在ur_gazebo —>urdf—>ur_macro.xacro中添加如下代码:
<!-- Gazebo FT sensor plugin -->
<gazebo reference="wrist_3_joint">
<provideFeedback>true</provideFeedback>
</gazebo>
<gazebo>
<plugin name="ft_sensor_plugin" filename="libgazebo_ros_ft_sensor.so">
<updateRate>200</updateRate>
<topicName>ft_sensor/raw</topicName>
<gaussianNoise>0.0</gaussianNoise>
<jointName>wrist_3_joint</jointName>
</plugin>
</gazebo>
最终完整的ur_macro.xacro如下所示:
<?xml version="1.0"?>
<robot xmlns:xacro="http://wiki.ros.org/xacro">
<!-- Definition of the main macro -->
<xacro:macro name="ur_robot_gazebo" params="
prefix
joint_limits_parameters_file
kinematics_parameters_file
physical_parameters_file
visual_parameters_file
transmission_hw_interface:=hardware_interface/EffortJointInterface
safety_limits:=false safety_pos_margin:=0.15 safety_k_position:=20"
>
<!--
Import the xacro macro for the REAL robot (which we'll augment with Gazebo
specific elements in the wrapper macro below).
NOTE: this imports the '_macro.xacro' from myur5_description, as that contains
the definitions for the real robot.
-->
<xacro:include filename="$(find myur5_description)/urdf/inc/ur_macro.xacro"/>
<!-- Instantiate model for the REAL robot. -->
<xacro:ur_robot
prefix="${prefix}"
joint_limits_parameters_file="${joint_limits_parameters_file}"
kinematics_parameters_file="${kinematics_parameters_file}"
physical_parameters_file="${physical_parameters_file}"
visual_parameters_file="${visual_parameters_file}"
transmission_hw_interface="${transmission_hw_interface}"
safety_limits="${safety_limits}"
safety_pos_margin="${safety_pos_margin}"
safety_k_position="${safety_k_position}"
/>
<!-- Configure self collision properties per link -->
<gazebo reference="${prefix}shoulder_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}upper_arm_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}forearm_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}wrist_1_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}wrist_3_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}wrist_2_link">
<selfCollide>true</selfCollide>
</gazebo>
<gazebo reference="${prefix}ee_link">
<selfCollide>true</selfCollide>
</gazebo>
<!-- Gazebo FT sensor plugin -->
<gazebo reference="wrist_3_joint">
<provideFeedback>true</provideFeedback>
</gazebo>
<gazebo>
<plugin name="ft_sensor_plugin" filename="libgazebo_ros_ft_sensor.so">
<updateRate>1</updateRate>
<topicName>ft_sensor/raw</topicName>
<gaussianNoise>0.0</gaussianNoise>
<jointName>wrist_3_joint</jointName>
</plugin>
</gazebo>
<!--
Inject Gazebo ROS Control plugin, which allows us to use ros_control
controllers to control the virtual robot hw.
-->
<gazebo>
<plugin name="ros_control" filename="libgazebo_ros_control.so">
<!--robotNamespace>/</robotNamespace-->
<!--robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType-->
</plugin>
</gazebo>
</xacro:macro>
</robot>
先运行Gazebo
roslaunch myur5_gazebo ur5_bringup.launch
再订阅相关话题ft_sensor/raw:
rostopic echo -c ft_sensor/raw
下载功能包到自定义的工作空间下并编译
在ur_description —>urdf—>ur_macro.xacro中添加如下代码:
前面加入声明:
<xacro:include filename="$(find onrobot_description)/urdf/onrobot_rg.urdf.xacro" />
末端关节tool0加入:
<!-- rg2 joint -->
<xacro:onrobot_rg parent="tool0" model='rg2_v1' prefix='rg2'>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0 0.0" />
</xacro:onrobot_rg>
<?xml version="1.0"?>
<robot xmlns:xacro="http://wiki.ros.org/xacro">
<xacro:include filename="$(find myur5_description)/urdf/inc/ur_transmissions.xacro" />
<xacro:include filename="$(find myur5_description)/urdf/inc/ur_common.xacro" />
<xacro:include filename="$(find onrobot_description)/urdf/onrobot_rg.urdf.xacro" />
<xacro:macro name="ur_robot" params="
prefix
joint_limits_parameters_file
kinematics_parameters_file
physical_parameters_file
visual_parameters_file
transmission_hw_interface:=hardware_interface/PositionJointInterface
safety_limits:=false
safety_pos_margin:=0.15
safety_k_position:=20"
>
<!-- Load configuration data from the provided .yaml files -->
<xacro:read_model_data
joint_limits_parameters_file="${joint_limits_parameters_file}"
kinematics_parameters_file="${kinematics_parameters_file}"
physical_parameters_file="${physical_parameters_file}"
visual_parameters_file="${visual_parameters_file}"/>
<!-- Add URDF transmission elements (for ros_control) -->
<xacro:ur_arm_transmission prefix="${prefix}" hw_interface="${transmission_hw_interface}" />
<!-- links: main serial chain -->
<link name="${prefix}base_link"/>
<link name="${prefix}base_link_inertia">
<visual>
<origin xyz="0 0 0" rpy="0 0 ${pi}"/>
<geometry>
<mesh filename="${base_visual_mesh}"/>
</geometry>
<material name="${base_visual_material_name}">
<color rgba="${base_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 0" rpy="0 0 ${pi}"/>
<geometry>
<mesh filename="${base_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${base_inertia_radius}" length="${base_inertia_length}" mass="${base_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}shoulder_link">
<visual>
<origin xyz="0 0 0" rpy="0 0 ${pi}"/>
<geometry>
<mesh filename="${shoulder_visual_mesh}"/>
</geometry>
<material name="${shoulder_visual_material_name}">
<color rgba="${shoulder_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 0" rpy="0 0 ${pi}"/>
<geometry>
<mesh filename="${shoulder_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${shoulder_inertia_radius}" length="${shoulder_inertia_length}" mass="${shoulder_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}upper_arm_link">
<visual>
<origin xyz="0 0 ${shoulder_offset}" rpy="${pi/2} 0 ${-pi/2}"/>
<geometry>
<mesh filename="${upper_arm_visual_mesh}"/>
</geometry>
<material name="${upper_arm_visual_material_name}">
<color rgba="${upper_arm_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 ${shoulder_offset}" rpy="${pi/2} 0 ${-pi/2}"/>
<geometry>
<mesh filename="${upper_arm_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${upperarm_inertia_radius}" length="${upperarm_inertia_length}" mass="${upper_arm_mass}">
<origin xyz="${-0.5 * upperarm_inertia_length} 0.0 ${upper_arm_inertia_offset}" rpy="0 ${pi/2} 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}forearm_link">
<visual>
<origin xyz="0 0 ${elbow_offset}" rpy="${pi/2} 0 ${-pi/2}"/>
<geometry>
<mesh filename="${forearm_visual_mesh}"/>
</geometry>
<material name="${forearm_visual_material_name}">
<color rgba="${forearm_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 ${elbow_offset}" rpy="${pi/2} 0 ${-pi/2}"/>
<geometry>
<mesh filename="${forearm_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${forearm_inertia_radius}" length="${forearm_inertia_length}" mass="${forearm_mass}">
<origin xyz="${-0.5 * forearm_inertia_length} 0.0 ${elbow_offset}" rpy="0 ${pi/2} 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}wrist_1_link">
<visual>
<!-- TODO: Move this to a parameter -->
<origin xyz="0 0 ${wrist_1_visual_offset}" rpy="${pi/2} 0 0"/>
<geometry>
<mesh filename="${wrist_1_visual_mesh}"/>
</geometry>
<material name="${wrist_1_visual_material_name}">
<color rgba="${wrist_1_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 ${wrist_1_visual_offset}" rpy="${pi/2} 0 0"/>
<geometry>
<mesh filename="${wrist_1_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${wrist_1_inertia_radius}" length="${wrist_1_inertia_length}" mass="${wrist_1_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}wrist_2_link">
<visual>
<origin xyz="0 0 ${wrist_2_visual_offset}" rpy="0 0 0"/>
<geometry>
<mesh filename="${wrist_2_visual_mesh}"/>
</geometry>
<material name="${wrist_2_visual_material_name}">
<color rgba="${wrist_2_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 ${wrist_2_visual_offset}" rpy="0 0 0"/>
<geometry>
<mesh filename="${wrist_2_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${wrist_2_inertia_radius}" length="${wrist_2_inertia_length}" mass="${wrist_2_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:cylinder_inertial>
</link>
<link name="${prefix}wrist_3_link">
<visual>
<origin xyz="0 0 ${wrist_3_visual_offset}" rpy="${pi/2} 0 0"/>
<geometry>
<mesh filename="${wrist_3_visual_mesh}"/>
</geometry>
<material name="${wrist_3_visual_material_name}">
<color rgba="${wrist_3_visual_material_color}"/>
</material>
</visual>
<collision>
<origin xyz="0 0 ${wrist_3_visual_offset}" rpy="${pi/2} 0 0"/>
<geometry>
<mesh filename="${wrist_3_collision_mesh}"/>
</geometry>
</collision>
<xacro:cylinder_inertial radius="${wrist_3_inertia_radius}" length="${wrist_3_inertia_length}" mass="${wrist_3_mass}">
<origin xyz="0.0 0.0 ${-0.5 * wrist_3_inertia_length}" rpy="0 0 0" />
</xacro:cylinder_inertial>
</link>
<!-- joints: main serial chain -->
<joint name="${prefix}base_link-base_link_inertia" type="fixed">
<parent link="${prefix}base_link" />
<child link="${prefix}base_link_inertia" />
<!-- 'base_link' is REP-103 aligned (so X+ forward), while the internal
frames of the robot/controller have X+ pointing backwards.
Use the joint between 'base_link' and 'base_link_inertia' (a dummy
link/frame) to introduce the necessary rotation over Z (of pi rad).
-->
<origin xyz="0 0 0" rpy="0 0 ${pi}" />
</joint>
<joint name="${prefix}shoulder_pan_joint" type="revolute">
<parent link="${prefix}base_link_inertia" />
<child link="${prefix}shoulder_link" />
<origin xyz="${shoulder_x} ${shoulder_y} ${shoulder_z}" rpy="${shoulder_roll} ${shoulder_pitch} ${shoulder_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${shoulder_pan_lower_limit}" upper="${shoulder_pan_upper_limit}"
effort="${shoulder_pan_effort_limit}" velocity="${shoulder_pan_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${shoulder_pan_lower_limit + safety_pos_margin}" soft_upper_limit="${shoulder_pan_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<joint name="${prefix}shoulder_lift_joint" type="revolute">
<parent link="${prefix}shoulder_link" />
<child link="${prefix}upper_arm_link" />
<origin xyz="${upper_arm_x} ${upper_arm_y} ${upper_arm_z}" rpy="${upper_arm_roll} ${upper_arm_pitch} ${upper_arm_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${shoulder_lift_lower_limit}" upper="${shoulder_lift_upper_limit}"
effort="${shoulder_lift_effort_limit}" velocity="${shoulder_lift_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${shoulder_lift_lower_limit + safety_pos_margin}" soft_upper_limit="${shoulder_lift_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<joint name="${prefix}elbow_joint" type="revolute">
<parent link="${prefix}upper_arm_link" />
<child link="${prefix}forearm_link" />
<origin xyz="${forearm_x} ${forearm_y} ${forearm_z}" rpy="${forearm_roll} ${forearm_pitch} ${forearm_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${elbow_joint_lower_limit}" upper="${elbow_joint_upper_limit}"
effort="${elbow_joint_effort_limit}" velocity="${elbow_joint_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${elbow_joint_lower_limit + safety_pos_margin}" soft_upper_limit="${elbow_joint_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<joint name="${prefix}wrist_1_joint" type="revolute">
<parent link="${prefix}forearm_link" />
<child link="${prefix}wrist_1_link" />
<origin xyz="${wrist_1_x} ${wrist_1_y} ${wrist_1_z}" rpy="${wrist_1_roll} ${wrist_1_pitch} ${wrist_1_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${wrist_1_lower_limit}" upper="${wrist_1_upper_limit}"
effort="${wrist_1_effort_limit}" velocity="${wrist_1_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${wrist_1_lower_limit + safety_pos_margin}" soft_upper_limit="${wrist_1_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<joint name="${prefix}wrist_2_joint" type="revolute">
<parent link="${prefix}wrist_1_link" />
<child link="${prefix}wrist_2_link" />
<origin xyz="${wrist_2_x} ${wrist_2_y} ${wrist_2_z}" rpy="${wrist_2_roll} ${wrist_2_pitch} ${wrist_2_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${wrist_2_lower_limit}" upper="${wrist_2_upper_limit}"
effort="${wrist_2_effort_limit}" velocity="${wrist_2_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${wrist_2_lower_limit + safety_pos_margin}" soft_upper_limit="${wrist_2_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<joint name="${prefix}wrist_3_joint" type="revolute">
<parent link="${prefix}wrist_2_link" />
<child link="${prefix}wrist_3_link" />
<origin xyz="${wrist_3_x} ${wrist_3_y} ${wrist_3_z}" rpy="${wrist_3_roll} ${wrist_3_pitch} ${wrist_3_yaw}" />
<axis xyz="0 0 1" />
<limit lower="${wrist_3_lower_limit}" upper="${wrist_3_upper_limit}"
effort="${wrist_3_effort_limit}" velocity="${wrist_3_velocity_limit}"/>
<xacro:if value="${safety_limits}">
<safety_controller soft_lower_limit="${wrist_3_lower_limit + safety_pos_margin}" soft_upper_limit="${wrist_3_upper_limit - safety_pos_margin}" k_position="${safety_k_position}" k_velocity="0.0"/>
</xacro:if>
<dynamics damping="0" friction="0"/>
</joint>
<!-- ROS-Industrial 'base' frame: base_link to UR 'Base' Coordinates transform -->
<link name="${prefix}base"/>
<joint name="${prefix}base_link-base_fixed_joint" type="fixed">
<!-- Note the rotation over Z of pi radians: as base_link is REP-103
aligned (ie: has X+ forward, Y+ left and Z+ up), this is needed
to correctly align 'base' with the 'Base' coordinate system of
the UR controller.
-->
<origin xyz="0 0 0" rpy="0 0 ${pi}"/>
<parent link="${prefix}base_link"/>
<child link="${prefix}base"/>
</joint>
<!-- ROS-Industrial 'flange' frame: attachment point for EEF models -->
<link name="${prefix}flange" />
<joint name="${prefix}wrist_3-flange" type="fixed">
<parent link="${prefix}wrist_3_link" />
<child link="${prefix}flange" />
<origin xyz="0 0 0" rpy="0 ${-pi/2.0} ${-pi/2.0}" />
</joint>
<!-- ROS-Industrial 'tool0' frame: all-zeros tool frame -->
<link name="${prefix}tool0"/>
<joint name="${prefix}flange-tool0" type="fixed">
<!-- default toolframe: X+ left, Y+ up, Z+ front -->
<origin xyz="0 0 0" rpy="${pi/2.0} 0 ${pi/2.0}"/>
<parent link="${prefix}flange"/>
<child link="${prefix}tool0"/>
</joint>
<!-- rg2 joint -->
<xacro:onrobot_rg parent="tool0" model='rg2_v1' prefix='rg2'>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0 0.0" />
</xacro:onrobot_rg>
</xacro:macro>
</robot>
#!/usr/bin/env python
import actionlib
import rospy
from control_msgs.msg import *
def main():
rospy.init_node('test_object_recognition')
client = actionlib.SimpleActionClient(
'rg2/gripper_controller/gripper_cmd', GripperCommandAction)
client.wait_for_server()
def gripper_cmd(position, effort):
rospy.loginfo('Cmd:\nposition=%.2f, max_effort=%.2f', position, effort)
goal = GripperCommandGoal()
goal.command.position = position
goal.command.max_effort = effort
client.send_goal(goal)
if client.wait_for_result():
result = client.get_result()
rospy.loginfo('Result:\n%s', result)
gripper_cmd(position=1, effort=0)
gripper_cmd(position=0, effort=0)
gripper_cmd(position=1, effort=1)
gripper_cmd(position=0, effort=1)
if __name__ == '__main__':
main()
后续工作:力矩传感器消除夹爪重力并进行零点标定
未完待续……