从上面多篇的讨论中我们了解到scalaz-stream代表一串连续无穷的数据或者程序。对这个数据流的处理过程就是一个状态机器(state machine)的状态转变过程。这种模式与我们通常遇到的程序流程很相似:通过程序状态的变化来推进程序进展。传统OOP式编程可能是通过一些全局变量来记录当前程序状态,而FP则是通过函数组合来实现状态转变的。这个FP模式讲起来有些模糊和抽象,但实际上通过我们前面长时间对FP编程的学习了解到FP编程讲究避免使用任何局部中间变量,更不用说全局变量了。FP程序的数据A是包嵌在算法F[A]内的。FP编程模式提供了一整套全新的数据更新方法来实现对F[A]中数据A的操作。对许多编程人员来讲,FP的这种编程方式会显得很别扭、不容易掌握。如果我们仔细观察分析,会发觉scalaz-stream就是一种很好的FP编程工具:它的数据也是不可变的(immutable),并且是包嵌在高阶类型结构里的,是通过Process状态转变来标示数据处理过程进展的。scalaz-stream的数据处理是有序流程,这样可以使我们更容易分析理解程序的运算过程,它的三个大环节包括:数据源(source),数据传换(transducer)及数据终点(Sink/Channel)可以很形象地描绘一个程序运算的全过程。scalaz-stream在运算过程中的并行运算方式(parallel computaion)、安全资源使用(resource safety)和异常处理能力(exception handling)是实现泛函多线程编程最好的支持。我们先来看看scalaz-stream里的一个典型函数:
/**
* Await the given `F` request and use its result.
* If you need to specify fallback, use `awaitOr`
*/
def await[F[_], A, O](req: F[A])(rcv: A => Process[F, O]): Process[F, O] =
awaitOr(req)(Halt.apply)(rcv)
/**
* Await a request, and if it fails, use `fb` to determine the next state.
* Otherwise, use `rcv` to determine the next state.
*/
def awaitOr[F[_], A, O](req: F[A])(fb: EarlyCause => Process[F, O])(rcv: A => Process[F, O]): Process[F, O] =
Await(req,(r: EarlyCause \/ A) => Trampoline.delay(Try(r.fold(fb,rcv))))
这个await函数可以说是一个代表完整程序流程的典范。注意,awaitOr里的Await是个数据结构。这样我们在递归运算await时可以避免StackOverflowError的发生。req: F[A]代表与外界交互的一个运算,如从外部获取输入、函数rcv对这个req产生的运算结果进行处理并设定程序新的状态。
import scalaz.stream._
import scalaz.concurrent._
object streamApps {
import Process._
def getInput: Task[Int] = Task.delay { 3 } //> getInput: => scalaz.concurrent.Task[Int]
val prg = await(getInput)(i => emit(i * 3)) //> prg : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await(scalaz.concurrent.Task@4973813a,<function1>,<function1>)
prg.runLog.run //> res0: Vector[Int] = Vector(9)
}
这是一个一步计算程序。我们可以再加一步:
val add10 = await1[Int].flatMap{i => emit(i + 10)}
//> add10 : scalaz.stream.Process[[x]scalaz.stream.Process.Env[Int,Any]#Is[x],Int] = Await(Left,<function1>,<function1>)
val prg1 = await(getInput)(i => emit(i * 3) |> add10)
//> prg1 : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Await(scalaz.concurrent.Task@6737fd8f,<function1>,<function1>)
prg1.runLog.run //> res0: Vector[Int] = Vector(19)
val prg3 = prg |> add10 //> prg3 : scalaz.stream.Process[scalaz.concurrent.Task,Int] = Append(Halt(End) ,Vector(<function1>))
prg3.runLog.run //> res1: Vector[Int] = Vector(19)
我们同样可以增加一步输出运算:
val outResult: Sink[Task,Int] = sink.lift { i => Task.delay{println(s"the result is: $i")}}
//> outResult : scalaz.stream.Sink[scalaz.concurrent.Task,Int] = Append(Emit(Vector(<function1>)),Vector(<function1>))
val prg4 = prg1 to outResult //> prg4 : scalaz.stream.Process[[x]scalaz.concurrent.Task[x],Unit] = Append(Halt(End),Vector(<function1>, <function1>))
prg4.run.run //> the result is: 19
import scalaz._
import Scalaz._
import scalaz.concurrent._
import scalaz.stream._
import Process._
object streamAppsDemo extends App {
def putLine(line: String) = Task.delay { println(line) }
def getLine = Task.delay { Console.readLine }
val readL = putLine("Enter:>").flatMap {_ => getLine}
val readLines = repeatEval(readL)
val echoLine = readLines.flatMap {line => eval(putLine(line))}
echoLine.run.run
}
Enter:>
hello world!
hello world!
Enter:>
how are you?
how are you?
Enter:>
当然,我们也可以把上面的程序表达的更形象些:
val outLine: Sink[Task,String] = constant(putLine _).toSource
val echoInput: Process[Task,Unit] = readLines to outLine
//echoLine.run.run
echoInput.run.run
def lines: Process[Task,String] = {
def go(line: String): Process[Task,String] =
line.toUpperCase match {
case "QUIT" => halt
case _ => emit(line) ++ await(readL)(go)
}
await(readL)(go)
}
val prg = lines to outLine
prg.run.run
下面再示范一下异常处理机制:看看能不能有效的捕捉到运行时的错误:
def mul(i: Int) = await1[String].flatMap { s => emit((s.toDouble * i).toString) }.repeat
val prg = (lines |> mul(5)) to outLine
prg.run.run
Enter:>
5
25.0
Enter:>
6
30.0
Enter:>
six
Exception in thread "main" java.lang.NumberFormatException: For input string: "six"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
我们可以用onFailure来捕捉任何错误:
def mul(i: Int) = await1[String].flatMap { s => emit((s.toDouble * i).toString) }.repeat
//val prg = (lines |> mul(5)) to outLine
val prg = (lines |> mul(5)).onFailure { e => emit("invalid input!!!") } to outLine
prg.run.run
Enter:>
5
25.0
Enter:>
6
30.0
Enter:>
six
invalid input!!!
def mul(i: Int) = await1[String].flatMap { s => emit((s.toDouble * i).toString) }.repeat
//val prg = (lines |> mul(5)) to outLine
val prg = (lines |> mul(5)).onFailure { e => emit("invalid input!!!") }
val prg1 = prg.onComplete{ Process.eval(Task.delay {println("end of program"); ""}) } to outLine
prg1.run.run
Enter:>
5
25.0
Enter:>
6
30.0
Enter:>
six
invalid input!!!
end of program
再有一个值得探讨的就是这些程序的组合集成。scalaz-stream就是存粹的泛函类型,那么基于scalaz-stream的程序就自然具备组合的能力了。我们可以用两个独立的程序来示范Process程序组合:
import scalaz._
import Scalaz._
import scalaz.concurrent._
import scalaz.stream._
import Process._
object prgStream extends App {
def prompt(prmpt: String) = Task.delay { print(prmpt) }
def putLine(line: String) = Task.delay { println(line) }
def getLine = Task.delay { Console.readLine }
val readLine1 = prompt("Prg1>:").flatMap {_ => getLine}
val readLine2 = prompt("Prg2>:").flatMap {_ => getLine}
val stdOutput = constant(putLine _).toSource
def multiplyBy(n: Int) = await1[String].flatMap {line =>
if (line.isEmpty) halt
else emit((line.toDouble * n).toString)
}.repeat
val prg1: Process[Task,String] = {
def go(line: String): Process[Task,String] = line.toUpperCase match {
case "QUIT" => halt
case _ => emit(line) ++ await(readLine1)(go)
}
await(readLine1)(go)
}.onComplete{ Process.eval(Task.delay {println("end of program1"); ""}) }
val prg2: Process[Task,String] = {
def go(line: String): Process[Task,String] = line.toUpperCase match {
case "QUIT" => halt
case _ => emit(line) ++ await(readLine2)(go)
}
await(readLine2)(go)
}.onComplete{ Process.eval(Task.delay {println("end of program2"); ""}) }
val program1 = (prg1 |> multiplyBy(3) to stdOutput)
val program2 = (prg2 |> multiplyBy(5) to stdOutput)
(program1 ++ program2).run.run
}
Prg1>:3
9.0
Prg1>:4
12.0
Prg1>:quit
end of program1
Prg2>:5
25.0
Prg2>:6
30.0
Prg2>:quit
end of program2
val program1 = (prg1 |> multiplyBy(3) observe stdOutput)
val program2 = (prg2 |> multiplyBy(5) observe stdOutput)
//(program1 ++ program2).run.run
val getOption = prompt("Enter your choice>:").flatMap {_ => getLine }
val mainPrg: Process[Task,String] = {
def go(input: String): Process[Task,String] = input.toUpperCase match {
case "QUIT" => halt
case "P1" => program1 ++ await(getOption)(go)
case "P2" => program2 ++ await(getOption)(go)
case _ => await(getOption)(go)
}
await(getOption)(go)
}.onComplete{ Process.eval(Task.delay {println("end of main"); ""}) }
mainPrg.run.run
我们先把program1和program2的终点类型Sink去掉。用observe来实现数据复制分流。这样program1和program2的结果类型才能与await的类型相匹配。我们可以测试运行一下:
Enter your choice>:p2
Prg2>:3
15.0
Prg2>:5
25.0
Prg2>:quit
end of program2
Enter your choice>:p1
Prg1>:3
9.0
Prg1>:6
18.0
Prg1>:quit
end of program1
Enter your choice>:wat
Enter your choice>:oh no
Enter your choice>:quit
end of main
scalaz-stream是一种泛函类型。我们在上面已经示范了它的函数组合能力。当然,如果程序的类型是Process,那么我们可以很容易地用merge来实现并行运算。
scalaz-stream作为一种程序运算框架可以轻松实现FP程序的组合,那么它成为一种安全稳定的泛函多线程编程工具就会是很好的选择。