This is a source code for the deep learning segmentation used in the paper Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm.It employs a U-Net like network for skull stripping and FLAIR abnormality segmentation.This repository contains a set of functions for data preprocessing (MatLab), training and inference (Python).Weights for trained models are provided and can be used for deep learning based skull stripping or fine-tuning on a different dataset.If you use our model or weights, please cite:
@article{buda2019association,
title={Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm},
author={Buda, Mateusz and Saha, Ashirbani and Mazurowski, Maciej A},
journal={Computers in Biology and Medicine},
volume={109},
year={2019},
publisher={Elsevier},
doi={10.1016/j.compbiomed.2019.05.002}
}
Developed by mateuszbuda.
The repository is divided into two folders.One for skull stripping and one for FLAIR abnormality segmentation.They are based on the same model architecture but can be used separately.
requirements.txt
filesudo pip install -r requirements.txt
Below we show qualitative results for the average and median case.Blue outline corresponds to ground truth and red to the final automatic segmentation output.Images show FLAIR modality after preprocessing and skull stripping.
Average Case | Median Case |
---|---|
The distribution of Dice similarity coefficient (DSC) for the whole dataset of 110 cases used in our study.
The red vertical line corresponds to mean DSC (83.60%) and the green one to median DSC (87.33%).
To download trained weights use download_weights.sh
script located in both skull stripping or flair segmentation folder.It downloads *.h5 file with weights corresponding to training log shown in each task specific folder and responsible for the results reported there.
The figure below shows a U-Net architecture implemented in this repository.
本文主要内容如下 复现yinniyu 上的WMH2017项目 我们自己的医疗数据处理后运用该模型测试,数据处理过程包括格式处理(GitHub上是nii格式我们是dicom格式,写代码读入dicom格式),其次图像配准,转化为模型输入数据。 模型改进 由于离开公司,该项目不再继续做下去。 一、github yinniyu 链接 github链接:WMH Segmentation github yin
Brain 是一个 JavaScript 神经网络库。下面是一个用它来实现近似 XOR 功能的例子: var net = new brain.NeuralNetwork();net.train([{input: [0, 0], output: [0]}, {input: [0, 1], output: [1]}, {input: [1, 0], output
Huabot Brain 可以说是 Caffe 的 GUI 工具。 Huabot Brain 提供 RESTful api 和一个基于 React 的 web 页面,使得开发者或者研究人员可以方便的使用 caffe,查看训练状态,提供 demo 和应用。 可作为一个嵌入式的子系统,通过简单的 RESTful api 给原有的系统提供深度学习的能力。 来几张截图:
Brain Workshop is a free open-source version of the Dual N-Back mental exercise.
这一行显示了你在图片中看到的警告…
问题内容: 使用子进程模块获取崩溃程序的输出时遇到问题。我正在使用python2.7和子进程来调用带有奇怪参数的程序,以获得一些段错误。为了调用该程序,我使用以下代码: 被调用的是一个包含程序名称和参数的列表(一个包含随机字节的字符串,除了子进程根本不喜欢的NULL字节) 该代码的行为会在程序不崩溃时向我显示stdout和stderr,但是在程序崩溃时,out和err为空,而不是显示著名的“分段错
http://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html 此范例是利用Spectral clustering来区别重叠的圆圈,将重叠的圆圈分为个体。 建立一个100x100的影像包含四个不同半径的圆 透过np.indices改变影像颜色复杂度 用spectral_clustering区分出各个不同