SystemML 是灵活的,可伸缩机器学习 (ML) 语言,使用 Java 编写。机器学习 (ML) 是指无需显式的编程即可让计算机学习的能力。
SystemML 与众不同的是:
(1) 可定制算法
(2) 多个执行模式,包括单个,Hadoop 批量和 Spark 批量,
(3) 自动优化
SystemML 先进的机器学习主要基于两方面:
SystemML 语言,声明式机器学习 (DML)。SystemML 包含线性代数原语,统计功能和 ML 指定结构,可以更容易也更原生的表达 ML 算法。算法通过 R 类型或者 Python 类型的语法进行表达。DML 通过提供灵活的定制分析表达和独立于底层输入格式和物理数据表示的数据显著提升数据科学的生产力。
其次,SystemML 提供自动优化功能,通过数据和集群特性保证高效和可伸缩。SystemML 可以在 MapReduce 或者 Spark 环境运行。
Apache 软件基金会宣布 Apache SystemML 从孵化器毕业,正式成为 Apache 顶级项目(TLP)。 Apache SystemML 是一个优化大数据的机器学习平台,为使用大数据的机器学习提供了最佳的工作场所。 它可以在 Apache Spark上运行,会自动缩放数据,逐行确定代码是否应在驱动程序或 Apache Spark 群集上运行。 使用 Apache SystemML,
There's a race between tech giants to open source machine learning systems and become a dominant platform. Apache SystemML has clear enterprise spin. IBM on Monday said its machine learning system, du
Spark发展史 大数据、人工智能( Artificial Intelligence )像当年的石油、电力一样, 正以前所未有的广度和深度影响所有的行业, 现在及未来公司的核心壁垒是数据, 核心竞争力来自基于大数据的人工智能的竞争。 Spark是当今大数据领域最活跃、最热门、最高效的大数据通用计算平台, 2009年诞生于美国加州大学伯克利分校AMP 实验室, 2010年通过BSD许可协议开源发布,
IBM is aiming to popularise its proprietary machine learning programme SystemML through open-source communities. Announcing the decision to share the system source code on the company blog, IBM’s Anal
主要内容:机器学习术语,假设函数&损失函数,拟合&过拟合&欠拟合机器学习是一门专业性很强的技术,它大量地应用了数学、统计学上的知识,因此总会有一些蹩脚的词汇,这些词汇就像“拦路虎”一样阻碍着我们前进,甚至把我们吓跑。因此认识,并理解这些词汇是首当其冲的任务。本节将介绍机器学习中常用的基本概念,为后续的知识学习打下坚实的基础。 机器学习术语 1) 模型 模型这一词语将会贯穿整个教程的始末,它是机器学习中的核心概念。你可以把它看做一个“魔法盒”,你向它许愿(输入数
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。
“三个臭皮匠顶个诸葛亮”。集成学习就是利用了这样的思想,通过把多分类器组合在一起的方式,构建出一个强分类器;这些被组合的分类器被称为基分类器。事实上,随机森林就属于集成学习的范畴。通常,集成学习具有更强的泛化能力,大量弱分类器的存在降低了分类错误率,也对于数据的噪声有很好的包容性。
主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。
主要内容:数据量,硬件依赖,特色工程在本章中,我们将讨论机器和深度学习概念之间的主要区别。 数据量 机器学习使用不同数量的数据,主要用于少量数据。另一方面,如果数据量迅速增加,深度学习可以有效地工作。下图描绘了机器学习和深度学习在数据量方面的工作 - 硬件依赖 与传统的机器学习算法相反,深度学习算法设计为在很大程度上依赖于高端机器。深度学习算法执行大量矩阵乘法运算,这需要巨大的硬件支持。 特色工程 特征工程是将领域知识放入指定特征的