在线阅读:https://dl.ypw.io
项目地址:https://github.com/ypwhs/dl-engineer-guidebook
本书会讲述一个深度学习工程师所需的所有东西:
8.26 测评 9.14 笔试 9.21 一面 自我介绍 项目介绍(细节深挖) BN层参数的作用 吸BN操作 样本不均衡问题 小目标问题 双线性插值(边界考虑) GAN网络能否落地 怎样提高特殊目标(电线杆、树)等目标的检测精度 反问 9.22 二面 自我介绍 项目介绍 编程能力和管理能力打分 团队管理方面(好多问题) 责任心考虑 地点考虑 期望薪资 offer考虑 互联网公司投递情况 为找工作做
记录一下面试遇到的一些题目,有的我自己写了答案,有的没写,这只是目前我能想起来的所有问题,希望可以给大家一点参考,如果我写的答案有不对的也请大家指教! 1.BN和LN的区别 2.什么情况下会发生梯度爆炸,如何解决(我们初始化的w是很大的数,w大到乘以激活函数的导数都大于1,那么连乘后,可能会导致求导的结果很大,形成梯度爆炸。 梯度截断:首先设置梯度阈值:clip_gradient,在后向传播中求出
职位:深度学习算法工程师 base:上海 技术一面 (9/15) - 30min 自我介绍 项目介绍,随后围绕项目进行展开提问,会议论文与期刊论文之间的差异 反问 部门主要做感知(车道线、行人感知。。。 技术二面 (9/21) - 30min 没开摄像头 自我介绍 项目介绍,所有项目都介绍了一遍 中途会被打断问问题 反问 对除了自己所研究的方向外,还了解哪些,知不知道reid的方法、目标检测算法什
1.算法题: 删除链表中倒数第n个节点 二叉树后续遍历 2.问项目 3.介绍一下NLP的发展过程 4.反问#vivo##面试经验分享##算法面试经验分享#
岗位:深度学习算法工程师 笔试:9月14日 一面(9月20日) 自我介绍 做什么方向 on-policy和off-policy DQN和PPO 为什么要提出PPO算法 论文为什么用强化学习 手撕代码:超简单,排序解决 反问 组内业务:vivo互联网,主要是应用商店等的推荐 HR面(9月23日) 自我介绍 优缺点 选一面答得不好的问题,重新回答 最大的挑战 最大的成果 实习最大的贡献 倾向城市 家庭
选择题内容:概率论 全是概率论(考研是吧?) 跟机器学习相关题目就一题,考recall和精确度关系; 填空题:找规律 脑筋急转弯 什么数组[i]值为不为数组中不为i的元素个数; 编程题:没写。润