1chipML 是一个开源库,用于微控制器的基本数值运算和机器学习。
1chipML 是 LF AI & Data Foundation 的沙盒阶段项目,旨在低性能和低功耗硬件上进行数值运算和机器学习。尽管该库的目标平台是微控制器,但也可以在普通的计算机上运行。
该软件包不需要任何安装,它本质上是针对微控制器的独立数值和机器学习方法的集合。因此,安装将取决于硬件本身以及所使用的软件工具(例如编译器)。
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
问题答案可关注公众号 机器学习算法面试,回复“资料”即可领取啦~~ 1.机器学习理论 1.1 数学知识 1.1.1 机器学习中的距离和相似度度量方式有哪些? 1.1.2 马氏距离比欧式距离的异同点? 1.1.3 张量与矩阵的区别? 1.1.4 如何判断矩阵为正定? 1.1.5 距离的严格定义? 1.1.6 参考 1.2 学习理论 1.2.1 什么是表示学习? 1.2.2 什么是端到端学习? 1.2
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。
感知机可以理解为几何中的线性方程:w*x+b=0 对应于特征空间 R^n 中的一个超平面 S ,其中 w 是超平面法向量,b 是超平面的截距。这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为正、负两类。
本教程将全面介绍深度学习从模型构造到模型训练的方方面面,以及它们在计算机视觉和自然语言处理中的应用。