SPMF 是一个基于JAVA的开源数据挖掘平台,它实现了51个常用的数据挖掘算法,覆盖:
首先介绍下SPMF,SPMF是一个采用Java开发的开源数据挖掘平台。它提供了51种数据挖掘算法实现,用于: •序列模式挖掘, •关联规则挖掘, •frequent itemset 挖掘, •顺序规则挖掘, •聚类 这几天放假研究了下Apriori算法的源代码,把总结写下,好记性不如一个烂笔头,防止以后忘。 Apriori算法的主要步骤: 数据读取 生成频繁1项集 如何由频繁K-1项集生成候选Ck
算法源代码下载地址 Algorithm.rar 是用Eclipse调试过的,直接用Eclipse打开工程文件即可运行。主方法在ca.pfv.spmf.test包内的MainTestKMeans_saveTiFile.java中,工程文件内还包括所有Spmf实现的聚类、分类、关联规则等相关算法。 算法步骤 (1)选择聚类的数量k,及决定生成类别的数量k (2)随机产生k个类,并指定每个类的中心cen
近年来提出了几种高效用项集挖掘算法。开源数据挖掘库SPMF中提供了目前Java实现的最先进的算法。(http://www.philippe-fournier-viger.com/spmf/) 例如,它提供了Two-Phase算法(2005年)、 UPGrowth算法(2011年)、 HUI-Miner算法(2012年) 和 FHM算法(2014年)的源代码。(http://www.philippe
数据挖掘 18 大算法实现以及其他相关经典 DM 算法,BIRCH 算法本身上属于一种聚类算法,不过他克服了一些 K-Means 算法的缺点。
一位挖掘专家 tom khabaza 提出了挖掘九律,挺好的东西,特别是九这个数字,深得中华文化精髓,有点独孤九剑的意思: 第一,目标律。 数据挖掘是一个业务过程,必须得有业务目标。无目的,无过程。 第二,知识律。 业务知识贯穿在挖掘这个业务过程的各环节。 第三,准备律。 数据获取、数据准备等数据处理耗时占整个挖掘过程的一半。 第四,NFL律。 NFL,没有免费的午餐。没有一个固定的算法适用所有的
字节跳动 (1h) 1.自我面试 2.挑一个你认为比较成功的项目进行介绍? 3.介绍你做过的特征工程 4.你都有过哪些算法?介绍下随机森林、XGB、GBDT的差异 5.对模型进行评估时候选取的方法 携程控股(45min) 1.自我介绍 2.选择一个项目进行介绍 3.你建模的时候都用到哪些方法 4.项目细节 5.模型评估 腾讯科技(1个小时) 1.自我介绍 2.直接问项目 3.解释下随机森林和GBD
硕士研究cv 可能和数据挖掘不是那么匹配~ 大华一面(1h): 1、增量学习的科研项目(问了具体的细节 以及为什么) 2、语义分割的发展 3、UNet中的跳跃连接的作用 4、残差网络的shortcut连接的作用,数学方面证明残差网络可以避免梯度消失,并且问了一个关于残差网络的改进问题(面试官看最新的论文看到的,我没有理解他所说的问题) 5、宫颈肿瘤分割和pcr预测的项目(细节也问的很详细) 6、预
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
1.1 KNN 1.1.1 思想 计算离待分类点距离最近的 K 个已分类点,K 个点中出现最多点种类为待分类点的种类。 1.1.2 距离 常见距离有欧式距离和余弦距离。余弦距离可以消除量纲的影响。相关系数 2. 聚类算法 2.1 K-means 2.1.1 思想 2.1.1.1 模型训练 根据类别个数 N,初始化 N 个点,作为该类别的中点。 遍历其他点,计算距离最近的中心点,该中心点的类别为当前
2道编程共40分,5道问答110分,共两个半小时,没做多久就退出来,哎。。。 有一道编程题用例过了,一提交通过0个用例,麻了 大佬给看看: 题目是车牌号识别准确率计算 输入N个车牌号,第一个字母是颜色,最后5个是号码,中间是地区号 每一行一个识别出的号码,一个真实标签 #我的秋招日记##网易雷火笔试##23届秋招笔面经#
时间过去有点久了,纯凭回忆,可能有些遗漏 一面 (1小时多吧) 机器学习基础知识 Bagging & Boosting 常用的聚类算法 Kmeans和DBSCAN的原理和区别 逻辑回归的原理 怎么处理离散数据 支持向量机原理 SVM怎么处理非线性 常用的回归模型 Attention原理 RNN和LSTM的区别 什么是梯度爆炸/梯度消失,什么情况下会出现 梯度渐进的原理 手撕算法 判断是否是回文 找