当前位置: 首页 > 软件库 > 企业应用 > BI商业智能 >

RapidMiner

数据挖掘工具
授权协议 AGPL
开发语言 Java
所属分类 企业应用、 BI商业智能
软件类型 开源软件
地区 不详
投 递 者 明越
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

功能和特点
免费提供数据挖掘技术和库
100%用Java代码(可运行在操作系统)
数据挖掘过程简单,强大和直观
内部XML保证了标准化的格式来表示交换数据挖掘过程
可以用简单脚本语言自动进行大规模进程
多层次的数据视图,确保有效和透明的数据
图形用户界面的互动原型
命令行(批处理模式)自动大规模应用
Java API(应用编程接口)
简单的插件和推广机制
强大的可视化引擎,许多尖端的高维数据的可视化建模
400多个数据挖掘运营商支持
耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘

  • RapidMiner使用指南 01工具简介 02数据准备、导入、导出 数据清理:处理缺失数据、约简数据、处理不一致的数据、约简属性 处理缺失数据:移除观察项、集中趋势算数度量代替缺失值等ReplaceMissingValue 约简数据:屏蔽不需要的数据 处理不一致的属性:与期望值不同 属性约简:p维度数据–>数据集x’,维度小于p,消除冗余和不相关的数据 导入数据库 Tool->available

  • 我有一个RapidMiner文本分类的过程。 它读取指定的Excel ssheet测试数据,并做了分类。 我也有它只是运行这个过程中一个小的Java应用程序。 现在我想使文件输入部分在我aplication,所以每次我将能够从我的应用程序(而不是从RapidMiner)指定Excel文件。 任何提示? 这是代码: import com.rapidminer.RapidMiner; import c

  • http://wenku.baidu.com/link?url=FhWasTFTn6iLECDrfcw_wkBLGLqVazCHfnBE0BDKm5gsMz3Ojw_3Zwc7UvWKlu9bVAtHOyspSEKtzxPAA2JbCoTNZkOjxA0d79bj1619Nt_

  • 1.rapidminer 官网下载社区版,安装. 2.eclipse指向rapidminer安装目录即可. 3.挂载jar包.

  • SPSS、RapidMiner、KNIME以及Kettle四款工具都可以用来进行数据分析,只是彼此有各自的侧重点和有劣势。它们都可以逐步的定义数据分析过程,也同样都可以对数据进行ETL处理。笔者从自己关心的角度简单对比以上四款数据分析工具。        SPSS不用多说,一款成功的商业数据分析软件,涵盖了统计分析、数据挖掘分析等各种数据分析方法。界面简单易用,分析过程定义时非常直观方便。因为,没

  • SPSS、RapidMiner、KNIME以及Kettle四款工具都可以用来进行数据分析,只是彼此有各自的侧重点和有劣势。它们都可以逐步的定义数据分析过程,也同样都可以对数据进行ETL处理。笔者从自己关心的角度简单对比以上四款数据分析工具。 一、SPSS SPSS不用多说,一款成功的商业数据分析软件,涵盖了统计分析、数据挖掘分析等各种数据分析方法。界面简单易用,分析过程定义时非常直观方便。因为,没

 相关资料
  • 数据挖掘 18 大算法实现以及其他相关经典 DM 算法,BIRCH 算法本身上属于一种聚类算法,不过他克服了一些 K-Means 算法的缺点。

  • 一位挖掘专家 tom khabaza 提出了挖掘九律,挺好的东西,特别是九这个数字,深得中华文化精髓,有点独孤九剑的意思: 第一,目标律。 数据挖掘是一个业务过程,必须得有业务目标。无目的,无过程。 第二,知识律。 业务知识贯穿在挖掘这个业务过程的各环节。 第三,准备律。 数据获取、数据准备等数据处理耗时占整个挖掘过程的一半。 第四,NFL律。 NFL,没有免费的午餐。没有一个固定的算法适用所有的

  • 字节跳动 (1h) 1.自我面试 2.挑一个你认为比较成功的项目进行介绍? 3.介绍你做过的特征工程 4.你都有过哪些算法?介绍下随机森林、XGB、GBDT的差异 5.对模型进行评估时候选取的方法 携程控股(45min) 1.自我介绍 2.选择一个项目进行介绍 3.你建模的时候都用到哪些方法 4.项目细节 5.模型评估 腾讯科技(1个小时) 1.自我介绍 2.直接问项目 3.解释下随机森林和GBD

  • 硕士研究cv 可能和数据挖掘不是那么匹配~ 大华一面(1h): 1、增量学习的科研项目(问了具体的细节 以及为什么) 2、语义分割的发展 3、UNet中的跳跃连接的作用 4、残差网络的shortcut连接的作用,数学方面证明残差网络可以避免梯度消失,并且问了一个关于残差网络的改进问题(面试官看最新的论文看到的,我没有理解他所说的问题) 5、宫颈肿瘤分割和pcr预测的项目(细节也问的很详细) 6、预

  • 数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

  • 1.1 KNN 1.1.1 思想 计算离待分类点距离最近的 K 个已分类点,K 个点中出现最多点种类为待分类点的种类。 1.1.2 距离 常见距离有欧式距离和余弦距离。余弦距离可以消除量纲的影响。相关系数 2. 聚类算法 2.1 K-means 2.1.1 思想 2.1.1.1 模型训练 根据类别个数 N,初始化 N 个点,作为该类别的中点。 遍历其他点,计算距离最近的中心点,该中心点的类别为当前

  • 2道编程共40分,5道问答110分,共两个半小时,没做多久就退出来,哎。。。 有一道编程题用例过了,一提交通过0个用例,麻了 大佬给看看: 题目是车牌号识别准确率计算 输入N个车牌号,第一个字母是颜色,最后5个是号码,中间是地区号 每一行一个识别出的号码,一个真实标签 #我的秋招日记##网易雷火笔试##23届秋招笔面经#

  • 时间过去有点久了,纯凭回忆,可能有些遗漏 一面 (1小时多吧) 机器学习基础知识 Bagging & Boosting 常用的聚类算法 Kmeans和DBSCAN的原理和区别 逻辑回归的原理 怎么处理离散数据 支持向量机原理 SVM怎么处理非线性 常用的回归模型 Attention原理 RNN和LSTM的区别 什么是梯度爆炸/梯度消失,什么情况下会出现 梯度渐进的原理 手撕算法 判断是否是回文 找