Apache Storm

分布式实时计算系统
授权协议 Apache
开发语言 Java Groovy Lisp
所属分类 服务器软件、 分布式应用/网格
软件类型 开源软件
地区 不详
投 递 者 柴博
操作系统 跨平台
开源组织 Apache
适用人群 未知
 软件概览

Apache Storm 的前身是 Twitter Storm 平台,目前已经归于 Apache 基金会管辖。

Apache Storm 是一个免费开源的分布式实时计算系统。简化了流数据的可靠处理,像 Hadoop 一样实现实时批处理。Storm 很简单,可用于任意编程语言。Apache Storm 采用 Clojure 开发。

Storm 有很多应用场景,包括实时数据分析、联机学习、持续计算、分布式 RPC、ETL 等。Storm 速度非常快,一个测试在单节点上实现每秒一百万的组处理。

目前已经有包括阿里百度在内的数家大型互联网公司在使用该平台。

  • 目录 一 说明 二 步骤  1.创建项目 2.引入依赖 3.主方法 4.创建Spout类 5.创建Bolt01 6.创建Bolt02 7.本地运行结果 8. 提交到Storm集群 三 总结   一 说明 通过最简单的方法,一分钟构建一个apache storm程序,初探storm原理。在此基础上再去探究strom深层机制,或许更加容易。 本文使用FirstSpout产生数据,Bolt01进行单词切

  • Apache storm是一个分布式的实时大数据处理系统。用于在容错和水平可拓展方法中处理大量数据。 它是一个流数据框架,具有很高的摄取率,无状态。通过zk管理分布式环境和集群状态,并行地对实时数据执行各种操作。 storm易于设置和操作,并且它保证每个消息将通过拓扑至少处理一次。   基本上Hadoop和Storm框架用于分析大数据。两者互补,在某些方面有所不同。Apache Storm执行除持

  • Apache Storm是一个免费的开源分布式实时计算系统。Apache Storm使可靠地处理无界数据流变得容易,为实时处理做了Hadoop为批处理做的事情。Apache Storm很简单,可以和任何编程语言一起使用,使用起来很有趣!Apache Storm有很多用例:实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。ApacheStorm速度很快:一个基准测试显示每个节点每秒处理超过

 相关资料
  • 主要内容:一、从一个新闻门户网站案例引入,二、推算一下你需要分析多少条数据?,三、黄金搭档:分布式存储+分布式计算这篇文章聊一个话题:什么是分布式计算系统? 一、从一个新闻门户网站案例引入 现在很多同学经常会看到一些名词,比如分布式服务框架,分布式系统,分布式存储系统,分布式消息系统。 但是有些经验尚浅的同学,可能都很容易被这些名词给搞晕。所以这篇文章就对“分布式计算系统”这个概念做一个科普类的分析。 如果你要理解啥是分布式计算,就必须先得理解啥是分布式存储,现在我们从一个小例子来引入。 比如说

  • 本章将重点介绍如何开始使用分布式TensorFlow。目的是帮助开发人员了解重复出现的基本分布式TF概念,例如TF服务器。我们将使用Jupyter Notebook来评估分布式TensorFlow。使用TensorFlow实现分布式计算如下所述 - 第1步 - 为分布式计算导入必需的模块 - 第2步 - 使用一个节点创建TensorFlow集群。让这个节点负责一个名称为“worker”的作业,并在

  • 在介绍GraphX之前,我们需要先了解分布式图计算框架。简言之,分布式图框架就是将大型图的各种操作封装成接口,让分布式存储、并行计算等复杂问题对上层透明,从而使工程师将焦点放在图相关的模型设计和使用上,而不用关心底层的实现细节。 分布式图框架的实现需要考虑两个问题,第一是怎样切分图以更好的计算和保存;第二是采用什么图计算模型。下面分别介绍这两个问题。 1 图切分方式 图的切分总体上说有点切分和边切

  • 一、MapReduce概述 Hadoop MapReduce 是一个分布式计算框架,用于编写批处理应用程序。编写好的程序可以提交到 Hadoop 集群上用于并行处理大规模的数据集。 MapReduce 作业通过将输入的数据集拆分为独立的块,这些块由 map 以并行的方式处理,框架对 map 的输出进行排序,然后输入到 reduce 中。MapReduce 框架专门用于 <key,value> 键值

  • 类型 实现框架 应用场景 批处理 MapReduce 微批处理 Spark Streaming 实时流计算 Storm

  • 其于职业介绍所、工头、工人、工作模型的分布式计算框架。 职业介绍所有两种,一种是本地职业介绍所,一种是远程职业介绍所。顾名思义,本地职业介绍所就是在当前计算机上的,远程职业介绍所用于连接到远程职业介绍所的。 工人、工头都可以加入到职业介绍所,所以加到本地或远程种业介绍所都是可以的。 在同一个职业介绍所中,具有同样类型的工人、工头和工作都存在的时候,工作就可以被安排下去执行。当然,有两种安排方式,一

  • 我想创建一个基于AKKA的分布式电子邮件邮箱系统。当我的应用程序启动时,我想创建所有收件箱参与者,并在他们上启动调度器,以接收邮件的时间间隔为10秒。但是有一个问题是如何创建这些收件箱角色?是否可以在集群上创建actor或获得对它的引用(如果它存在的话)?Actor名称可以是数据库中的邮箱UUID,群集中只能存在一个具有特定UUID的Actor。 最重要的问题是如何在集群中创建以uuid为名称的a

  • 如何计算大的皮尔逊互相关矩阵( 更新:我读了阿帕奇火花的实现 但对我来说,看起来所有的计算都发生在一个节点上,而不是真正意义上的分布式。 请在这里放一些光。我还尝试在3节点火花群集上执行它,下面是屏幕截图: 正如您从第二张图中看到的,数据在一个节点上被拉起,然后进行计算。我在这里对吗?