给一个x和y,问它们在数组中是否相邻
#include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> vec(n); for(auto &c : vec){ cin >> c; } int x, y; cin >> x >> y; bool f = false; for(int i = 0; i < n-1;i++){ if(vec[i] == x && vec[i+1] == y || vec[i] == y && vec[i+1] == x){ f = true; break; } } if(f){ cout << "Yes\n"; }else{ cout << "No\n"; } }
给一个x和y(下标从1到n),以及一个环形数组,数组a[i] 表示第i个点到第i+1个点的距离,求x到y的最短距离
#include <iostream> #include <vector> #include <algorithm> using namespace std; using ll = int64_t; int main() { int n; cin >> n; vector<ll> vec(n); for (auto& c : vec) { cin >> c; } ll x, y; cin >> x >> y; x--, y--; ll ans = 1e9; if (x > y) { ll mx1 = 0, mx2 = 0; for (int i = y; i < x; i++) { mx1 += vec[i]; } for (int i = x; i < n; i++) { mx2 += vec[i]; } for (int i = 0; i < y; i++) { mx2 += vec[i]; } ans = min(mx1, mx2); } else {//x < y ll mx1 = 0, mx2 = 0; for (int i = x; i < y; i++) { mx1 += vec[i]; } for (int i = y; i < n; i++) { mx2 += vec[i]; } for (int i = 0; i < x; i++) { mx2 += vec[i]; } ans = min(mx1, mx2); } cout <<ans; } // 64 位输出请用 printf("%lld")
给你一个二维数组,你需要横线切一刀或者竖向切一刀,将其分为两块(记作a,b),
求两数组的和之间的最小的差值(即abs(sumA - sumB)
#include <iostream> #include <vector> #include <algorithm> using namespace std; using ll = int64_t; ll n, m, s1 = 0, s2 = 0, sum = 0; const int N = 1e3+10; ll a[N][N]; int main() { //一刀,二维前缀和问题 cin >> n >> m; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ cin >> a[i][j]; sum += a[i][j]; } } for(int i = 1; i < n; i++){ a[i][0] += a[i-1][0]; } for(int j = 1; j < m; j++){ a[0][j] += a[0][j-1]; } for(int i = 1; i < n; i++){ for(int j = 1; j < m; j++){ a[i][j] += a[i-1][j] + a[i][j-1] - a[i-1][j-1]; } } ll ans = 1e18; for(int i = 0; i < n; i++){ //ll preSum = a[i][m-2] + a[i-1][m-1] - a[i-1][m-2]; ans = min(ans, abs(a[i][m-1] - (sum - a[i][m-1]))); } for(int j = 0; j < m; j++){ //ll preSum = a[n-1][j-1] + a[i-1][j] - ans = min(ans, abs(a[n-1][j] - (sum - a[n-1][j]))); } cout << ans << endl; } // 64 位输出请用 printf("%lld")
给你一个长度为n的字符串,然后你可以将其分为x*y = n的二维数组,当四个方向字符相同时为联通块,求最小的连通块个数
不懂啊,为啥我才60%,盯了40分钟也没看出来,希望有大佬可以给我说一下
好吧已经有大佬点醒我了,我只计算了nm中n<=m的情况
#include <iostream> #include <vector> #include <algorithm> #include <cstdio> #include <cstring> using namespace std; using ll = int64_t; const int N = 1e3+10; const int dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0}; int nn, mm, ans = 1e9, every = 0; void dfs(int x, int y, vector<vector<char>> &g, vector<vector<int>> &vis){ vis[x][y] = 1; for(int i = 0; i < 4; i++){ int nx = x + dx[i], ny = y + dy[i]; if(nx < 0 || nx >= nn || ny < 0 || ny >= mm) continue; if(vis[nx][ny] == 1 || g[x][y] != g[nx][ny]) continue; vis[nx][ny] = 1; dfs(nx, ny, g, vis); } } void calc(vector<vector<char>> &g, vector<vector<int>> &vis){ for(int i = 0; i < nn; i++){ for(int j = 0; j < mm; j++){ if(vis[i][j] == 0) { vis[i][j] = 1; dfs(i, j, g, vis); every ++; } } } } int main() { int n; cin >> n; string s; cin >> s; vector<int> yinzi; for(int i = 1; i * i <= n; i++){ if(n % i == 0) yinzi.push_back(i); } for(int c : yinzi){ nn = n / c, mm = c; vector<vector<char>> g(nn, vector<char>(mm)); vector<vector<int>> vis(nn, vector<int>(mm, 0)); for(int i = 0; i < nn; i++){ for(int j = 0; j < mm; j++){ g[i][j] = s[i * mm + j]; // cout << g[i][j]; } // cout << endl; } //cout << endl; every = 0; //memset(vis, 0, sizeof(vis)); calc(g, vis); ans = min(every, ans); } cout << ans; } // 64 位输出请用 printf("%lld")
给你一颗树,一开始节点颜色都是黑色,每个节点都有一个权值,当两个相邻节点的乘积为完全平方数时,你可以将他们同时染成红色,求这颗树中,你最多能得到多少红色节点
print(0) //6.67%#笔试#