一、概述
Handler 、 Looper 、Message 这三者都与Android异步消息处理线程相关的概念。那么什么叫异步消息处理线程呢?
异步消息处理线程启动后会进入一个无限的循环体之中,每循环一次,从其内部的消息队列中取出一个消息,然后回调相应的消息处理函数,执行完成一个消息后则继续循环。若消息队列为空,线程则会阻塞等待。
说了这一堆,那么和Handler 、 Looper 、Message有啥关系?其实Looper负责的就是创建一个MessageQueue,然后进入一个无限循环体不断从该MessageQueue中读取消息,而消息的创建者就是一个或多个Handler 。
二、源码解析
1、Looper
对于Looper主要是prepare()和loop()两个方法。
首先看prepare()方法
public static final void prepare() { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(true)); }
sThreadLocal是一个ThreadLocal对象,可以在一个线程中存储变量。可以看到,在第5行,将一个Looper的实例放入了ThreadLocal,并且2-4行判断了sThreadLocal是否为null,否则抛出异常。这也就说明了Looper.prepare()方法不能被调用两次,同时也保证了一个线程中只有一个Looper实例~相信有些哥们一定遇到这个错误。
下面看Looper的构造方法:
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mRun = true; mThread = Thread.currentThread(); }
在构造方法中,创建了一个MessageQueue(消息队列)。
然后我们看loop()方法:
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycle(); } }
第2行:
public static Looper myLooper() { return sThreadLocal.get(); }
方法直接返回了sThreadLocal存储的Looper实例,如果me为null则抛出异常,也就是说looper方法必须在prepare方法之后运行。
第6行:拿到该looper实例中的mQueue(消息队列)
13到45行:就进入了我们所说的无限循环。
14行:取出一条消息,如果没有消息则阻塞。
27行:使用调用 msg.target.dispatchMessage(msg);把消息交给msg的target的dispatchMessage方法去处理。Msg的target是什么呢?其实就是handler对象,下面会进行分析。
44行:释放消息占据的资源。
Looper主要作用:
(1)与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue。
(2)loop()方法,不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理。
好了,我们的异步消息处理线程已经有了消息队列(MessageQueue),也有了在无限循环体中取出消息的哥们,现在缺的就是发送消息的对象了,于是乎:Handler登场了。
2、Handler
使用Handler之前,我们都是初始化一个实例,比如用于更新UI线程,我们会在声明的时候直接初始化,或者在onCreate中初始化Handler实例。所以我们首先看Handler的构造方法,看其如何与MessageQueue联系上的,它在子线程中发送的消息(一般发送消息都在非UI线程)怎么发送到MessageQueue中的。
public Handler() { this(null, false); } public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
14行:通过Looper.myLooper()获取了当前线程保存的Looper实例,然后在19行又获取了这个Looper实例中保存的MessageQueue(消息队列),这样就保证了handler的实例与我们Looper实例中MessageQueue关联上了。
Handler 常用方法:
(1)post(Runnable)
(2)postAtTime(Runnable,long)
(3)postDelayed(Runnable long)
(4)sendEmptyMessage(int)
(5)sendMessage(Message)
(6)sendMessageAtTime(Message,long)
(7)sendMessageDelayed(Message,long)
以上post类方法允许你排列一个Runnable对象到主线程队列中, sendMessage类方法, 允许你安排一个带数据的Message对象到队列中,等待更新.
一般运行逻辑:
点击button --- > 启动一条新线程,用来处理数据 ---- >数据处理完毕,通过handler返回 ----- > handler里面接收返回的数据,进行UI更新等处理。
然后看我们最常用的sendMessage方法
public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); } public final boolean sendEmptyMessageDelayed(int what, long delayMillis) { Message msg = Message.obtain(); msg.what = what; return sendMessageDelayed(msg, delayMillis); } public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
辗转反则最后调用了sendMessageAtTime,在此方法内部有直接获取MessageQueue然后调用了enqueueMessage方法,我们再来看看此方法:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
enqueueMessage中首先为meg.target赋值为this,【如果大家还记得Looper的loop方法会取出每个msg然后交给msg,target.dispatchMessage(msg)去处理消息】,也就是把当前的handler作为msg的target属性。最终会调用queue的enqueueMessage的方法,也就是说handler发出的消息,最终会保存到消息队列中去。
现在已经很清楚了Looper会调用prepare()和loop()方法,在当前执行的线程中保存一个Looper实例,这个实例会保存一个MessageQueue对象,然后当前线程进入一个无限循环中去,不断从MessageQueue中读取Handler发来的消息。然后再回调创建这个消息的handler中的dispathMessage方法,下面我们赶快去看一看这个方法:
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
可以看到,第10行,调用了handleMessage方法,下面我们去看这个方法:
/** * Subclasses must implement this to receive messages. */ public void handleMessage(Message msg) { }
可以看到这是一个空方法,为什么呢,因为消息的最终回调是由我们控制的,我们在创建handler的时候都是复写handleMessage方法,然后根据msg.what进行消息处理。
例如:
private Handler mHandler = new Handler() { public void handleMessage(android.os.Message msg) { switch (msg.what) { case value: break; default: break; } }; };
到此,这个流程已经解释完毕,让我们首先总结一下
(1)首先Looper.prepare()在本线程中保存一个Looper实例,然后该实例中保存一个MessageQueue对象;因为Looper.prepare()在一个线程中只能调用一次,所以MessageQueue在一个线程中只会存在一个。
(2)Looper.loop()会让当前线程进入一个无限循环,不端从MessageQueue的实例中读取消息,然后回调msg.target.dispatchMessage(msg)方法。
(3)Handler的构造方法,会首先得到当前线程中保存的Looper实例,进而与Looper实例中的MessageQueue想关联。
(4)Handler的sendMessage方法,会给msg的target赋值为handler自身,然后加入MessageQueue中。
(5)在构造Handler实例时,我们会重写handleMessage方法,也就是msg.target.dispatchMessage(msg)最终调用的方法。
好了,总结完成,大家可能还会问,那么在Activity中,我们并没有显示的调用Looper.prepare()和Looper.loop()方法,为啥Handler可以成功创建呢,这是因为在Activity的启动代码中,已经在当前UI线程调用了Looper.prepare()和Looper.loop()方法。
3、Handler post
今天有人问我,你说Handler的post方法创建的线程和UI线程有什么关系?
其实这个问题也是出现这篇博客的原因之一;这里需要说明,有时候为了方便,我们会直接写如下代码:
mHandler.post(new Runnable() { @Override public void run() { Log.e("TAG", Thread.currentThread().getName()); mTxt.setText("yoxi"); } });
然后run方法中可以写更新UI的代码,其实这个Runnable并没有创建什么线程,而是发送了一条消息,下面看源码:
public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); } private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }
可以看到,在getPostMessage中,得到了一个Message对象,然后将我们创建的Runable对象作为callback属性,赋值给了此message.
注:产生一个Message对象,可以new ,也可以使用Message.obtain()方法;两者都可以,但是更建议使用obtain方法,因为Message内部维护了一个Message池用于Message的复用,避免使用new 重新分配内存。
public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
最终和handler.sendMessage一样,调用了sendMessageAtTime,然后调用了enqueueMessage方法,给msg.target赋值为handler,最终加入MessagQueue.
可以看到,这里msg的callback和target都有值,那么会执行哪个呢?
其实上面已经贴过代码,就是dispatchMessage方法:
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
第2行,如果不为null,则执行callback回调,也就是我们的Runnable对象。
好了,关于Looper , Handler , Message 这三者关系上面已经叙述的非常清楚了。
最后来张图解:
希望图片可以更好的帮助大家的记忆~~
三、补充
其实Handler不仅可以更新UI,你完全可以在一个子线程中去创建一个Handler,然后使用这个handler实例在任何其他线程中发送消息,最终处理消息的代码都会在你创建Handler实例的线程中运行。
eg:
new Thread() { private Handler handler; public void run() { Looper.prepare(); handler = new Handler() { public void handleMessage(android.os.Message msg) { Log.e("TAG",Thread.currentThread().getName()); }; } }
Android不仅给我们提供了异步消息处理机制让我们更好的完成UI的更新,其实也为我们提供了异步消息处理机制代码的参考~~不仅能够知道原理,最好还可以将此设计用到其他的非Android项目中去~~
线程中使用 java.lang.Runnable 如果用户在代码中通过 java.lang.Runnable 新启动了线程或者采用了线程池去异步地处理一些业务,那么需要将 SOFATracer 日志上下文从父线程传递到子线程中去,SOFATracer 提供的 com.alipay.common.tracer.core.async.SofaTracerRunnable 默认完成了此操作,大家可以按照
本文向大家介绍Android编程实现异步消息处理机制的几种方法总结,包括了Android编程实现异步消息处理机制的几种方法总结的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Android编程实现异步消息处理机制的几种方法。分享给大家供大家参考,具体如下: 1、概述 Android需要更新ui的话就必须在ui线程上进行操作。否则就会抛异常。 假如有耗时操作,比如:在子线程中下载文件,通知u
本文向大家介绍javascript异步编程的六种方式总结,包括了javascript异步编程的六种方式总结的使用技巧和注意事项,需要的朋友参考一下 异步编程 众所周知 JavaScript 是单线程工作,也就是只有一个脚本执行完成后才能执行下一个脚本,两个脚本不能同时执行,如果某个脚本耗时很长,后面的脚本都必须排队等着,会拖延整个程序的执行。那么如何让程序像人类一样可以多线程工作呢?以下为几种异步
本文向大家介绍Android中断线程的处理方法,包括了Android中断线程的处理方法的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Android中断线程的处理方法。分享给大家供大家参考。具体方法如下: 我现在对一个用户注册的功能 1.用ProgressDialog将当前页面设成不可操作(保留返回键 退出ProgressDialog) 2.用一个线程clientThread执行数据的提交
本文向大家介绍python 异常处理总结,包括了python 异常处理总结的使用技巧和注意事项,需要的朋友参考一下 最近,做个小项目经常会遇到Python 的异常,让人非常头疼,故对异常进行整理,避免下次遇到异常不知所措,以下就是对Python 异常进行的整理。 1.Python异常类 异常 描述 NameError 尝试访问一个没有申明的变量 ZeroDivisionErro
本文向大家介绍Android中异步类AsyncTask用法总结,包括了Android中异步类AsyncTask用法总结的使用技巧和注意事项,需要的朋友参考一下 本文总结分析了Android中异步类AsyncTask用法。分享给大家供大家参考,具体如下: 最近整理笔记的时候,看到有关AsyncTask不是很理解,重新疏导了一下,有在网上找了一些资料,个人不敢独享,一并发在这里与大家共勉 这里有两种解