在高负载多线程应用中性能是非常重要的。为了达到更好的性能,开发者必须意识到并发的重要性。当我们需要使用并发时, 常常有一个资源必须被两个或多个线程共享。
在这种情况下,就存在一个竞争条件,也就是其中一个线程可以得到锁(锁与特定资源绑定),其他想要得到锁的线程会被阻塞。这个同步机制的实现是有代价的,为了向你提供一个好用的同步模型,JVM和操作系统都要消耗资源。有三个最重要的因素使并发的实现会消耗大量资源,它们是:
为了写出针对同步的优化代码,你必须认识到这三个因素以及如何减少它们。在写这样的代码时你需要注意很多东西。在本文中,我会向你介绍一种通过降低锁粒度的技术来减少这些因素。
让我们从一个基本原则开始:不要长时间持有不必要的锁。
在获得锁之前做完所有需要做的事,只把锁用在需要同步的资源上,用完之后立即释放它。我们来看一个简单的例子:
public class HelloSync { private Map dictionary = new HashMap(); public synchronized void borringDeveloper(String key, String value) { long startTime = (new java.util.Date()).getTime(); value = value + "_"+startTime; dictionary.put(key, value); System.out.println("I did this in "+ ((new java.util.Date()).getTime() - startTime)+" miliseconds"); } }
在这个例子中,我们违反了基本原则,因为我们创建了两个Date对象,调用了System.out.println(),还做了很多次String连接操作,但唯一需要做同步的操作是“dictionary.put(key, value);”。让我们来修改代码,把同步方法变成只包含这句的同步块,得到下面更优化的代码:
public class HelloSync { private Map dictionary = new HashMap(); public void borringDeveloper(String key, String value) { long startTime = (new java.util.Date()).getTime(); value = value + "_"+startTime; synchronized (dictionary) { dictionary.put(key, value); } System.out.println("I did this in "+ ((new java.util.Date()).getTime() - startTime)+" miliseconds"); } }
上面的代码可以进一步优化,但这里只想传达出这种想法。如果你对如何进一步优化感兴趣,请参考java.util.concurrent.ConcurrentHashMap.
那么,我们怎么降低锁粒度呢?简单来说,就是通过尽可能少的请求锁。基本的想法是,分别用不同的锁来保护同一个类中多个独立的状态变量,而不是对整个类域只使用一个锁。我们来看下面这个我在很多应用中见到过的简单例子:
public class Grocery { private final ArrayList fruits = new ArrayList(); private final ArrayList vegetables = new ArrayList(); public synchronized void addFruit(int index, String fruit) { fruits.add(index, fruit); } public synchronized void removeFruit(int index) { fruits.remove(index); } public synchronized void addVegetable(int index, String vegetable) { vegetables.add(index, vegetable); } public synchronized void removeVegetable(int index) { vegetables.remove(index); } }
杂货店主可以对他的杂货铺中的蔬菜和水果进行添加/删除操作。上面对杂货铺的实现,通过基本的Grocery 锁来保护fruits和vegetables,因为同步是在方法域完成的。事实上,我们可以不使用这个大范围的锁,而是针对每个资源(fruits和vegetables)分别使用一个锁。来看一下改进后的代码:
public class Grocery { private final ArrayList fruits = new ArrayList(); private final ArrayList vegetables = new ArrayList(); public void addFruit(int index, String fruit) { synchronized(fruits) fruits.add(index, fruit); } public void removeFruit(int index) { synchronized(fruits) {fruits.remove(index);} } public void addVegetable(int index, String vegetable) { synchronized(vegetables) vegetables.add(index, vegetable); } public void removeVegetable(int index) { synchronized(vegetables) vegetables.remove(index); } }
在使用了两个锁后(把锁分离),我们会发现比起之前用一个整体锁,锁阻塞的情况更少了。当我们把这个技术用在有中度锁争抢的锁上时,优化提升会更明显。如果把该方法应用到轻微锁争抢的锁上,改进虽然比较小,但还是有效果的。但是如果把它用在有重度锁争抢的锁上时,你必须认识到结果并非总是更好。
请有选择性的使用这个技术。如果你怀疑一个锁是重度争抢锁请按下面的方法来确认是否使用上面的技术:
用于改进同步性能的技术还有很多,但对所有的技术来说最基本的原则只有一个:不要长时间持有不必要的锁。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Java编程中的性能优化如何实现,包括了Java编程中的性能优化如何实现的使用技巧和注意事项,需要的朋友参考一下 String作为我们使用最频繁的一种对象类型,其性能问题是最容易被忽略的。作为Java中重要的数据类型,是内存中占据空间比较大的一个对象。如何高效地使用字符串,可以帮助我们提升系统的整体性能。 现在,我们就从String对象的实现、特性以及实际使用中的优化这几方
本文向大家介绍Java并发编程之闭锁与栅栏的实现,包括了Java并发编程之闭锁与栅栏的实现的使用技巧和注意事项,需要的朋友参考一下 一、前言 闭锁与栅栏是在多线程编程中的概念,因为在多线程中,我们不能控制线程的执行状态,所以给线程加锁,让其按照我们的想法有秩序的执行。 闭锁 CountDownLatch,实例化时需要传入一个int类型的数字(count),意为等待count个线程完成之后才能执行下
本文向大家介绍详解Python并发编程之从性能角度来初探并发编程,包括了详解Python并发编程之从性能角度来初探并发编程的使用技巧和注意事项,需要的朋友参考一下 . 前言 作为进阶系列的一个分支「并发编程」,我觉得这是每个程序员都应该会的。 并发编程 这个系列,我准备了将近一个星期,从知识点梳理,到思考要举哪些例子才能更加让人容易吃透这些知识点。希望呈现出来的效果真能如想象中的那样,对小白也一样
全面记录了 Java 并发编程的相关知识,包括 Java 5 新增加的并发包内的相关类,分析了并发编程中的常见问题,并深入 Java 内存模型,对底层并发机制的实现做了一些分析。
本文向大家介绍几种JAVA细粒度锁的实现方式,包括了几种JAVA细粒度锁的实现方式的使用技巧和注意事项,需要的朋友参考一下 最近在工作上碰见了一些高并发的场景需要加锁来保证业务逻辑的正确性,并且要求加锁后性能不能受到太大的影响。初步的想法是通过数据的时间戳,id等关键字来加锁,从而保证不同类型数据处理的并发性。而java自身api提供的锁粒度太大,很难同时满足这些需求,于是自己动手写了几个简单的扩
主要内容:示例,死锁解决方案示例死锁描述了两个或多个线程等待彼此而被永久阻塞的情况。 当多个线程需要相同的锁定但以不同的顺序获取时,会发生死锁。 Java多线程程序可能会遇到死锁状况,因为关键字会导致执行线程在等待与指定对象相关联的锁定或监视时出现阻止情况。 看看下面一个例子。 示例 当您编译并执行上述程序时,会出现死锁情况,以下是程序生成的输出 - 上述程序将永久挂起,因为两个线程都不能继续进行,等待彼此释放锁定,所以您可以按