当前位置: 首页 > 编程笔记 >

使用go实现常见的数据结构

索吕恭
2023-03-14
本文向大家介绍使用go实现常见的数据结构,包括了使用go实现常见的数据结构的使用技巧和注意事项,需要的朋友参考一下

1 golang常见数据结构实现

1.1 链表

举单链表的例子,双向链表同理只是多了pre指针。

定义单链表结构:

type LinkNode struct {
	Data int64
	NextNode *LinkNode
}

构造链表及打印链表:

func main() {

	node := new(LinkNode)
	node.Data = 1

	node1 := new(LinkNode)
	node1.Data = 2
	node.NextNode = node1 // node1 链接到 node 节点上

	node2 := new(LinkNode)
	node2.Data = 3
	node1.NextNode = node2 // node2 链接到 node1 节点上

	// 顺序打印。把原链表头结点赋值到新的NowNode上
	// 这样仍然保留了原链表头结点node不变
	nowNode := node
	for nowNode != nil {
		fmt.Println(nowNode.Data)
		// 获取下一个节点。链表向下滑动
		nowNode = nowNode.NextNode
	}
}

1.2 可变数组

可变数组在各种语言中都非常常用,在golang中,可变数组语言本身已经实现,就是我们的切片slice。

1.3 栈和队列

1.3.1 原生切片实现栈和队列

栈:先进后出,后进先出,类似弹夹

队列:先进先出

golang中,实现并发不安全的栈和队列,非常简单,我们直接使用原生切片即可。

1.3.1.1 切片原生栈实现
func main() {
	// 用切片制作一个栈
	var stack []int
	// 元素1 入栈
	stack = append(stack, 1, 5, 7, 2)
	// 栈取出最近添加的数据。例如[1,5,7,2] ,len = 4
	x := stack[len(stack)-1] // 2
	// 切掉最近添加的数据,上一步和这一步模仿栈的pop。
	stack = stack[:len(stack)-1] // [1,5,7]
	fmt.Printf("%d", x)
}
1.3.1.2 切片原生队列实现
func main() {

	// 用切片模仿队列
	var queue []int
	// 进队列
	queue = append(queue, 1, 5, 7, 2)
	// 队头弹出,再把队头切掉,模仿队列的poll操作
	cur := queue[0]
	queue = queue[1:]

	fmt.Printf("%d", cur)
}

1.3.2 *并发安全的栈和队列

1.3.2.1 切片实现并发安全的栈并发安全的栈
// 数组栈,后进先出
type Mystack struct {
 array []string // 底层切片
 size int // 栈的元素数量
 lock sync.Mutex // 为了并发安全使用的锁
}

入栈

// 入栈
func (stack *Mytack) Push(v string) {
 stack.lock.Lock()
 defer stack.lock.Unlock()

 // 放入切片中,后进的元素放在数组最后面
 stack.array = append(stack.array, v)

 // 栈中元素数量+1
 stack.size = stack.size + 1
}

出栈

1、如果切片偏移量向前移动 stack.array[0 : stack.size-1],表明最后的元素已经不属于该数组了,数组变相的缩容了。此时,切片被缩容的部分并不会被回收,仍然占用着空间,所以空间复杂度较高,但操作的时间复杂度为:O(1)。

2、如果我们创建新的数组 newArray,然后把老数组的元素复制到新数组,就不会占用多余的空间,但移动次数过多,时间复杂度为:O(n)。

func (stack *Mystack) Pop() string {
 stack.lock.Lock()
 defer stack.lock.Unlock()

 // 栈中元素已空
 if stack.size == 0 {
 panic("empty")
 }

 // 栈顶元素
 v := stack.array[stack.size-1]

 // 切片收缩,但可能占用空间越来越大
 //stack.array = stack.array[0 : stack.size-1]

 // 创建新的数组,空间占用不会越来越大,但可能移动元素次数过多
 newArray := make([]string, stack.size-1, stack.size-1)
 for i := 0; i < stack.size-1; i++ {
 newArray[i] = stack.array[i]
 }
 stack.array = newArray

 // 栈中元素数量-1
 stack.size = stack.size - 1
 return v
}

获取栈顶元素

// 获取栈顶元素
func (stack *Mystack) Peek() string {
 // 栈中元素已空
 if stack.size == 0 {
 panic("empty")
 }

 // 栈顶元素值
 v := stack.array[stack.size-1]
 return v
}

获取栈大小和判定是否为空

// 栈大小
func (stack *Mystack) Size() int {
 return stack.size
}

// 栈是否为空
func (stack *Mystack) IsEmpty() bool {
 return stack.size == 0
}
1.3.2.2 切片实现并发安全的队列队列结构
// 数组队列,先进先出
type Myqueue struct {
 array []string // 底层切片
 size int // 队列的元素数量
 lock sync.Mutex // 为了并发安全使用的锁
}

入队

// 入队
func (queue *Myqueue) Add(v string) {
 queue.lock.Lock()
 defer queue.lock.Unlock()

 // 放入切片中,后进的元素放在数组最后面
 queue.array = append(queue.array, v)

 // 队中元素数量+1
 queue.size = queue.size + 1
}

出队

1、原地挪位,依次补位 queue.array[i-1] = queue.array[i],然后数组缩容:queue.array = queue.array[0 : queue.size-1],但是这样切片缩容的那部分内存空间不会释放。

2、创建新的数组,将老数组中除第一个元素以外的元素移动到新数组。

// 出队
func (queue *Myqueue) Remove() string {
 queue.lock.Lock()
 defer queue.lock.Unlock()

 // 队中元素已空
 if queue.size == 0 {
 panic("empty")
 }

 // 队列最前面元素
 v := queue.array[0]

 /* 直接原位移动,但缩容后继的空间不会被释放
 for i := 1; i < queue.size; i++ {
 // 从第一位开始进行数据移动
 queue.array[i-1] = queue.array[i]
 }
 // 原数组缩容
 queue.array = queue.array[0 : queue.size-1]
 */

 // 创建新的数组,移动次数过多
 newArray := make([]string, queue.size-1, queue.size-1)
 for i := 1; i < queue.size; i++ {
 // 从老数组的第一位开始进行数据移动
 newArray[i-1] = queue.array[i]
 }
 queue.array = newArray

 // 队中元素数量-1
 queue.size = queue.size - 1
 return v
}

1.4 字典Map和集合Set

1.4.1 Map

字典也是程序语言经常使用的结构,golang中的字典是其自身实现的map结构。具体操作可以查看语言api

并发安全的map,可以定义结构,结构中有一个map成员和一个锁变量成员,参考并发安全的栈和队列的实现。go语言也实现了一个并发安全的map,具体参考sync.map的api

1.4.2 Set

我们可以借助map的特性,实现一个Set结构。

Set结构

map的值我们不适用,定义为空的结构体struct{}

// 集合结构体
type Set struct {
 m map[int]struct{} // 用字典来实现,因为字段键不能重复
 len int // 集合的大小
 sync.RWMutex // 锁,实现并发安全
}

初始化Set

// 新建一个空集合
func NewSet(cap int64) *Set {
 temp := make(map[int]struct{}, cap)
 return &Set{
 m: temp,
 }
}

往set中添加一个元素

// 增加一个元素
func (s *Set) Add(item int) {
 s.Lock()
 defer s.Unlock()
 s.m[item] = struct{}{} // 实际往字典添加这个键
 s.len = len(s.m) // 重新计算元素数量
}

删除一个元素

// 移除一个元素
func (s *Set) Remove(item int) {
 s.Lock()
 s.Unlock()

 // 集合没元素直接返回
 if s.len == 0 {
 return
 }

 delete(s.m, item) // 实际从字典删除这个键
 s.len = len(s.m) // 重新计算元素数量
}

查看元素是否在集合set中

// 查看是否存在元素
func (s *Set) Has(item int) bool {
 s.RLock()
 defer s.RUnlock()
 _, ok := s.m[item]
 return ok
}

查看集合大小

// 查看集合大小
func (s *Set) Len() int {
 return s.len
}

查看集合是否为空

// 集合是够为空
func (s *Set) IsEmpty() bool {
 if s.Len() == 0 {
 return true
 }
 return false
}

清除集合所有元素

// 清除集合所有元素
func (s *Set) Clear() {
 s.Lock()
 defer s.Unlock()
 s.m = map[int]struct{}{} // 字典重新赋值
 s.len = 0 // 大小归零
}

将集合转化为切片

func (s *Set) List() []int {
 s.RLock()
 defer s.RUnlock()
 list := make([]int, 0, s.len)
 for item := range s.m {
 list = append(list, item)
 }
 return list
}

1.5 二叉树

二叉树:每个节点最多只有两个儿子节点的树。

满二叉树:叶子节点与叶子节点之间的高度差为 0 的二叉树,即整棵树是满的,树呈满三角形结构。在国外的定义,非叶子节点儿子都是满的树就是满二叉树。我们以国内为准。

完全二叉树:完全二叉树是由满二叉树而引出来的,设二叉树的深度为 k,除第 k 层外,其他各层的节点数都达到最大值,且第 k 层所有的节点都连续集中在最左边。

二叉树结构定义

// 二叉树
type TreeNode struct {
 Data string // 节点用来存放数据
 Left *TreeNode // 左子树
 Right *TreeNode // 右字树
}

树的遍历

1、先序遍历:先访问根节点,再访问左子树,最后访问右子树。

2、后序遍历:先访问左子树,再访问右子树,最后访问根节点。

3、中序遍历:先访问左子树,再访问根节点,最后访问右子树。

4、层次遍历:每一层从左到右访问每一个节点。

// 先序遍历
func PreOrder(tree *TreeNode) {
 if tree == nil {
 return
 }

 // 先打印根节点
 fmt.Print(tree.Data, " ")
 // 再打印左子树
 PreOrder(tree.Left)
 // 再打印右字树
 PreOrder(tree.Right)
}

// 中序遍历
func MidOrder(tree *TreeNode) {
 if tree == nil {
 return
 }

 // 先打印左子树
 MidOrder(tree.Left)
 // 再打印根节点
 fmt.Print(tree.Data, " ")
 // 再打印右字树
 MidOrder(tree.Right)
}

// 后序遍历
func PostOrder(tree *TreeNode) {
 if tree == nil {
 return
 }

 // 先打印左子树
 MidOrder(tree.Left)
 // 再打印右字树
 MidOrder(tree.Right)
 // 再打印根节点
 fmt.Print(tree.Data, " ")
}

按层遍历:

func Level(head *TreeNode) {

	if head == nil {
		return
	}

	// 用切片模仿队列
	var queue []*TreeNode
	queue = append(queue, head)

	for len(queue) != 0 {
		// 队头弹出,再把队头切掉,模仿队列的poll操作
		cur := queue[0]
		queue = queue[1:]

		fmt.Printf("%d", (*cur).Data)

		// 当前节点有左孩子,加入左孩子进队列
		if cur.Left != nil {
			queue = append(queue, cur.Left)
		}

		// 当前节点有右孩子,加入右孩子进队列
		if cur.Right != nil {
			queue = append(queue, cur.Right)
		}
	}

}

到此这篇关于用go实现常见的数据结构的文章就介绍到这了,更多相关go实现数据结构内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!

 类似资料:
  • 本章讲解如何使用 Rust 进行一些常用数据结构的实现。实现的代码仅作示例用,并不一定十分高效。真正使用的时候,请使用标准库或第三方成熟库中的数据结构。

  • 图的存储结构 图的存储结构除了要存储图中各个顶点的本身信息外,同时还要存储顶点与顶点之间的所有关系(边的信息),因此,图的结构比较复杂,很难以数据元素在存储区中的物理位置来表示元素之间的关系,但也正是由于其任意的特性,故物理表示方法很多。常用的图的存储结构有邻接矩阵、邻接表等。 邻接矩阵表示法 对于一个具有n个结点的图,可以使用n*n的矩阵(二维数组)来表示它们间的邻接关系。矩阵 A(i,j) =

  • 栈简介 栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。 它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。 栈(stack)又名堆栈,它是一种运算受限的线性表。其限制是仅允许在表的一端进行插入和删除运算。这一端被称为栈顶,相对地,把另一端称为栈底。向一个栈插入新元素又称作进栈、入栈或压栈,

  • 链表简介 链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。 由于不必须按顺序存储,链表在给定位置插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是在有序数据中查找一个

  • 队列简介 队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。 在队列的形成过程中,可以利用线性链表的原理,来生成一个队列。基于链表的队列,要动态创建和删除节点,效率较低,但是可以动态增长。队列采用的 FIFO

  • 二叉树简介 在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。 二叉查找树的子节点与父节点的键一般满足一定的顺序关系,习惯上,左节点的键少于父亲节点的键,右节点的键大于父亲节点的键。 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉