当前位置: 首页 > 编程笔记 >

C#环形缓冲区(队列)完全实现

鲁熙云
2023-03-14
本文向大家介绍C#环形缓冲区(队列)完全实现,包括了C#环形缓冲区(队列)完全实现的使用技巧和注意事项,需要的朋友参考一下

公司项目中经常设计到串口通信,TCP通信,而且大多都是实时的大数据的传输,然后大家都知道协议通讯肯定涉及到什么,封包、拆包、粘包、校验……什么鬼的概念一大堆,说简单点儿就是要一个高效率可复用的缓存区。按照码农的惯性思维就是去百度、谷歌搜索看有没有现成的东西可以直接拿来用,然而我并没有找到,好吧不是很难的东西自己实现一个呗。开扯…… 

为什么要用环形队列?
环形队列是在实际编程极为有用的数据结构,它有如下特点:
它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。
因为有简单高效的原因,甚至在硬件都实现了环形队列。 

C#完全实现(可直接使用)
鄙人新手这份代码肯定有不足之处,望大家指出交流,涉及到的多线程同步问题请调用者完成,不废话直接上代码。

 public class RingBufferManager
{
  public byte[] Buffer { get; set; } // 存放内存的数组
  public int DataCount { get; set; } // 写入数据大小
  public int DataStart { get; set; } // 数据起始索引
  public int DataEnd { get; set; }  // 数据结束索引
  public RingBufferManager(int bufferSize)
  {
    DataCount = 0; DataStart = 0; DataEnd = 0;
    Buffer = new byte[bufferSize];
  }

  public byte this[int index]
  {
    get
    {
      if (index >= DataCount) throw new Exception("环形缓冲区异常,索引溢出");
      if (DataStart + index < Buffer.Length)
      {
        return Buffer[DataStart + index];
      }
      else 
      {
        return Buffer[(DataStart + index) - Buffer.Length];
      }
    }
  }

  public int GetDataCount() // 获得当前写入的字节数
  {
    return DataCount;
  }

  public int GetReserveCount() // 获得剩余的字节数
  {
    return Buffer.Length - DataCount;
  }

  public void Clear()
  {
    DataCount = 0;
  }

  public void Clear(int count) // 清空指定大小的数据
  {
    if (count >= DataCount) // 如果需要清理的数据大于现有数据大小,则全部清理
    {
      DataCount = 0;
      DataStart = 0;
      DataEnd = 0;
    }
    else
    {
      if (DataStart + count >= Buffer.Length)
      {
        DataStart = (DataStart + count) - Buffer.Length;
      }
      else 
      {
        DataStart += count;
      }
      DataCount -= count;
    }
  }

  public void WriteBuffer(byte[] buffer, int offset, int count)
  {
    Int32 reserveCount = Buffer.Length - DataCount;
    if (reserveCount >= count)             // 可用空间够使用
    {
      if (DataEnd + count < Buffer.Length)      // 数据没到结尾
      {
        Array.Copy(buffer, offset, Buffer, DataEnd, count);
        DataEnd += count;
        DataCount += count;
      }
      else      // 数据结束索引超出结尾 循环到开始
      {
        System.Diagnostics.Debug.WriteLine("缓存重新开始....");
        Int32 overflowIndexLength = (DataEnd + count) - Buffer.Length;   // 超出索引长度
        Int32 endPushIndexLength = count - overflowIndexLength;       // 填充在末尾的数据长度
        Array.Copy(buffer, offset, Buffer, DataEnd, endPushIndexLength);
        DataEnd = 0;
        offset += endPushIndexLength;
        DataCount += endPushIndexLength;
        if (overflowIndexLength != 0)
        {
          Array.Copy(buffer, offset, Buffer, DataEnd, overflowIndexLength);
        }
        DataEnd += overflowIndexLength;                   // 结束索引
        DataCount += overflowIndexLength;                  // 缓存大小
      }
    }
    else 
    {
      // 缓存溢出,不处理
    }
  }

  public void ReadBuffer(byte[] targetBytes,Int32 offset, Int32 count) 
  {
    if (count > DataCount) throw new Exception("环形缓冲区异常,读取长度大于数据长度");
    Int32 tempDataStart = DataStart;
    if (DataStart + count < Buffer.Length)
    {
      Array.Copy(Buffer, DataStart, targetBytes, offset, count);
    }
    else 
    {
      Int32 overflowIndexLength = (DataStart + count) - Buffer.Length;  // 超出索引长度
      Int32 endPushIndexLength = count - overflowIndexLength;       // 填充在末尾的数据长度
      Array.Copy(Buffer, DataStart, targetBytes, offset, endPushIndexLength);
      
      offset += endPushIndexLength;
      
      if (overflowIndexLength != 0)
      {
        Array.Copy(Buffer, 0, targetBytes, offset, overflowIndexLength);
      }
    }
  }


  public void WriteBuffer(byte[] buffer)
  {
    WriteBuffer(buffer, 0, buffer.Length);
  }

}

调用实例
生产

 int len = sConn.Receive(receiveBuffer, 0, receiveBuffer.Length, SocketFlags.None, out se);
if (len <= 0) throw new Exception("disconnect..");
if (len > 0)
{
  lock (LockReceiveBuffer)
  {
    while (len + receiveBufferManager.DataCount > MAX_BUFFER_LEN)    // 缓存溢出处理
    {
      Monitor.Wait(LockReceiveBuffer,10000);
    }
    receiveBufferManager.WriteBuffer(receiveBuffer, 0, len);
    Monitor.PulseAll(LockReceiveBuffer);
  }
} 

消费

 lock (LockReceiveBuffer)
{
  freame_byte = new byte[frameLen];
  receiveBufferManager.ReadBuffer(freame_byte, 0, frameLen);
  receiveBufferManager.Clear(frameLen);
} 

验证 
TCP大数据连续测试一周没出现问题内存问题。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 环形缓冲区接口 结构体 struct   rt_ringbuffer   环形缓冲区控制块 更多...   枚举 函数 void  rt_ringbuffer_init (struct rt_ringbuffer *rb, rt_uint8_t *pool, rt_int16_t size)   初始化环形缓冲区   void  rt_ringbuffer_reset (struct rt_rin

  • 环形块状缓冲区接口 结构体 struct   rt_rbb_blk   rbb 中的块 更多...   struct   rt_rbb_blk_queue   块队列。这些块在队列中,其 buffer 地址是连续的 更多...   struct   rt_rbb   环形块状缓冲区,简称 rbb 更多...   枚举 函数 void  rt_rbb_init (rt_rbb_t rbb, rt_u

  • 在循环队列的数组实现中,如果在第一个元素之前指向一个插槽,而在最后一个元素之后指向一个插槽,则会面临如何识别队列是满还是空的问题。 为了解决这个问题,我们要么使用计数器,要么在缓冲区中浪费一个空间。 我在想下面的方法。请纠正我的错误,如果没有请让我知道这是一个更好/更差的解决方案比以上。 null

  • 问题内容: 我有一个流时间序列,我有兴趣保留最后4个元素,这意味着我希望能够弹出第一个元素并将其添加到末尾。本质上我需要一个环形缓冲区。 哪个Java集合最适合此用途?向量? 问题答案: 考虑CircularFifoBuffer Apache的Common.Collections。与Queue不同,你不必维护基础集合的有限大小,只要达到极限就可以包装它。 由于以下属性,CircularFifoBu

  • 环形缓冲区在处理异步IO时非常实用。它们可以在一端接收随机长度和区间的数据,在另一端以相同长度和区间提供密致的数据块。它们是Queue数据结构的变体,但是它针对于字节块而不是一系列指针。这个练习中我打算向你展示RingBuffer的代码,并且之后你需要对它执行完整的单元测试。 #ifndef _lcthw_RingBuffer_h #define _lcthw_RingBuffer_h #inc

  • 环型缓冲区是一种用于表示一个固定尺寸、头尾相连的缓冲区的数据结构,适合缓存数据流。 构造环型缓冲区 var ringBuffer = new RingBufferStream(); 函数原型 RingBufferStream(int capacity = 8192, bool exposable = true); 参数 描述 capacity 环状缓冲区的最大容量,为2的次方。如:传入12,则