python里面的matplotlib.pylot是大家比较常用的,功能也还不错的一个包。基本框架比较简单,但是做一个功能完善且比较好看整洁的图,免不了要网上查找一些函数。于是,为了节省时间,可以一劳永逸。我把常用函数作了一个总结,最后写了一个例子,以后基本不用怎么改了。
一、作图流程:
1.准备数据, , 3作图, 4定制, 5保存, 6显示
1.数据可以是numpy数组,也可以是list
2创建画布:
import matplotlib.pyplot as plt #figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True) #num:图像编号或名称,数字为编号 ,字符串为名称 #figsize:指定figure的宽和高,单位为英寸; #dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 ,1英寸等于2.5cm,A4纸是 21*30cm的纸张 #facecolor:背景颜色 #edgecolor:边框颜色 #frameon:是否显示边 fig = plt.figure() fig = plt.figure(figsize=(8,6), dpi=80) fig.add_axes() fig, axes = plt.subplos(nrows = 2, ncols = 2) #axes是长度为4的列表
3、作图路线
一维数据:
axes[0, 0].plot(x, y) axes[0,1].bar([1,2,3], [2,4,8]) axes[0,2].barh([1,2,3], [2,4,8]) axes[1,0].axhline(0.45) axes[1, 1].scatter(x, y) axes[1,2].axvline(0.65) axes[2,0].fill(x,y, color = 'blue') axes[2,1].fill_between(x,y, color = 'blue') axes[2,2].violinplot(y) axes[0,3].arrow(0,0,0.5,0.5) axes[1,3].quiver(x,y)
4, 定制
plt.plot(x,y, alpha=0.4, c = 'blue', maker = 'o') #颜色,标记,透明度 # 显示数学文本 t = np.arange(0.0, 2.0, 0.01) s = np.sin(2*np.pi*t) plt.plot(t,s) plt.title(r'$\alpha_i > \beta_i$', fontsize=20) plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20) plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$', fontsize=20) plt.xlabel('time (s)') plt.ylabel('volts (mV)') fig = plt.figure() fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold') ax = fig.add_subplot(111) fig.subplots_adjust(top=0.85) ax.set_title('axes title') ax.set_xlabel('xlabel') ax.set_ylabel('ylabel') ax.text(3, 8, 'boxed italics text in data coords', style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10}) ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15) ax.text(3, 2, u'unicode: Institut f\374r Festk\366rperphysik') ax.text(0.95, 0.01, 'colored text in axes coords', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='green', fontsize=15) ax.plot([2], [1], 'o') # 注释 ax.annotate('我是注释啦', xy=(2, 1), xytext=(3, 4),color='r',size=15, arrowprops=dict(facecolor='g', shrink=0.05)) ax.axis([0, 10, 0, 10])
5, 保存显示
plt.savefig("1.png") plt.savefig("1.png", trainsparent =True) plt.show()
二、部分函数使用详解:
1, fig.add_subplot(numrows, numcols, fignum) ####三个参数,分别代表子图的行数,列数,图索引号。 eg: ax = fig.add_subplot(2, 3, 1) (or ,ax = fig.add_subplot(231))
2, plt.subplots()使用
x = np.linspace(0, 2*np.pi,400) y = np.sin(x**2) fig, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Creates two subplots and unpacks the output array immediately #fig = plt.figure(figsize=(6,6)) f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Creates four polar axes, and accesses them through the returned array fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True)) axes[0, 0].plot(x, y) axes[1, 1].scatter(x, y) # Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row') # Share both X and Y axes with all subplots plt.subplots(2, 2, sharex='all', sharey='all') # Note that this is the same as plt.subplots(2, 2, sharex=True, sharey=True) # Creates figure number 10 with a single subplot # and clears it if it already exists. fig, ax=plt.subplots(num=10, clear=True)
3.plt.legend()
plt.legend(loc='String or Number', bbox_to_anchor=(num1, num2)) plt.legend(loc='upper center', bbox_to_anchor (0.6,0.95),ncol=3,fancybox=True,shadow=True) #bbox_to_anchor被赋予的二元组中,第一个数值用于控制legend的左右移动,值越大越向右边移动,第二个数值用于控制legend的上下移动,值越大,越向上移动
以上这篇python matplotlib中的subplot函数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
在使用 Matplotlib 绘图时,我们大多数情况下,需要将一张画布划分为若干个子区域,之后,我们就可以在这些区域上绘制不用的图形。在本节,我们将学习如何在同一画布上绘制多个子图。 模块提供了一个 subplot() 函数,它可以均等地划分画布,该函数的参数格式如下: plt.subplot(nrows, ncols, index) nrows 与 ncols 表示要划分几行几列的子区域(nro
本文向大家介绍PythonMatplotlib,包括了PythonMatplotlib的使用技巧和注意事项,需要的朋友参考一下 示例 Matplotlib是一个用于Python的数学绘图库,它提供了各种不同的绘图功能。 您可以在此处找到matplotlib文档,并在此处提供SO文档。 Matplotlib提供了两种不同的绘图方法,尽管它们在很大程度上可以互换: 首先,matplotlib提供了py
本文向大家介绍Python中的getopt函数使用详解,包括了Python中的getopt函数使用详解的使用技巧和注意事项,需要的朋友参考一下 函数原型: 参数解释: args:args为需要解析的参数列表。一般使用sys.argv[1:],这样可以过滤掉第一个参数(ps:第一个参数是脚本的名称,它不应该作为参数进行解析) shortopts:简写参数列表 longopts
本文向大家介绍详解Swift中的函数及函数闭包使用,包括了详解Swift中的函数及函数闭包使用的使用技巧和注意事项,需要的朋友参考一下 一、引言 函数是有特定功能的代码段,函数会有一个特定的名称调用时来使用。Swift提供了十分灵活的方式来创建与调用函数。事实上在Swift,每个函数都是一种类型,这种类型由参数和返回值来决定。Swift和Objective-C的一大区别就在于Swift中的函数可以
本文向大家介绍C语言中fchdir()函数和rewinddir()函数的使用详解,包括了C语言中fchdir()函数和rewinddir()函数的使用详解的使用技巧和注意事项,需要的朋友参考一下 C语言fchdir()函数:改变当前工作目录 头文件: 定义函数: 函数说明:fchdir()用来将当前的工作目录改变成以参数fd 所指的文件描述词。 返回值:执行成功则返回 0, 失败返回-1, err
本文向大家介绍详解C语言中accept()函数和shutdown()函数的使用,包括了详解C语言中accept()函数和shutdown()函数的使用的使用技巧和注意事项,需要的朋友参考一下 C语言accept()函数:接受socket连线 头文件: 定义函数: 函数说明:accept()用来接受参数s 的socket 连线. 参数s 的socket 必需先经bind()、listen()函数处理