最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:
1、scatter函数原型
2、其中散点的形状参数marker如下:
3、其中颜色参数c如下:
4、基本的使用方法如下:
#导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure() ax1 = fig.add_subplot(111) #设置标题 ax1.set_title('Scatter Plot') #设置X轴标签 plt.xlabel('X') #设置Y轴标签 plt.ylabel('Y') #画散点图 ax1.scatter(x,y,c = 'r',marker = 'o') #设置图标 plt.legend('x1') #显示所画的图 plt.show()
结果如下:
5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:
(1)、不同大小
#导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure() ax1 = fig.add_subplot(111) #设置标题 ax1.set_title('Scatter Plot') #设置X轴标签 plt.xlabel('X') #设置Y轴标签 plt.ylabel('Y') #画散点图 sValue = x*10 ax1.scatter(x,y,s=sValue,c='r',marker='x') #设置图标 plt.legend('x1') #显示所画的图 plt.show()
(2)、不同颜色
#导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure() ax1 = fig.add_subplot(111) #设置标题 ax1.set_title('Scatter Plot') #设置X轴标签 plt.xlabel('X') #设置Y轴标签 plt.ylabel('Y') #画散点图 cValue = ['r','y','g','b','r','y','g','b','r'] ax1.scatter(x,y,c=cValue,marker='s') #设置图标 plt.legend('x1') #显示所画的图 plt.show()
结果:
(3)、线宽linewidths
#导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure() ax1 = fig.add_subplot(111) #设置标题 ax1.set_title('Scatter Plot') #设置X轴标签 plt.xlabel('X') #设置Y轴标签 plt.ylabel('Y') #画散点图 lValue = x ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o') #设置图标 plt.legend('x1') #显示所画的图 plt.show()
注: 这就是scatter基本的用法。
PS:下面举个示例
本文记录了python中的数据可视化——散点图scatter,令x作为数据(50个点,每个30维),我们仅可视化前两维。labels为其类别(假设有三类)。
这里的x就用random来了,具体数据具体分析。
label设定为[1:20]->1, [21:35]->2, [36:50]->3,(python中数组连接方法:先强制转为list,用+,再转回array)
用matplotlib的scatter绘制散点图,legend和matlab中稍有不同,详见代码。
x = rand(50,30) from numpy import * import matplotlib import matplotlib.pyplot as plt #basic f1 = plt.figure(1) plt.subplot(211) plt.scatter(x[:,1],x[:,0]) # with label plt.subplot(212) label = list(ones(20))+list(2*ones(15))+list(3*ones(15)) label = array(label) plt.scatter(x[:,1],x[:,0],15.0*label,15.0*label) # with legend f2 = plt.figure(2) idx_1 = find(label==1) p1 = plt.scatter(x[idx_1,1], x[idx_1,0], marker = 'x', color = 'm', label='1', s = 30) idx_2 = find(label==2) p2 = plt.scatter(x[idx_2,1], x[idx_2,0], marker = '+', color = 'c', label='2', s = 50) idx_3 = find(label==3) p3 = plt.scatter(x[idx_3,1], x[idx_3,0], marker = 'o', color = 'r', label='3', s = 15) plt.legend(loc = 'upper right')
result:
figure(1):
figure(2):
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Python中flatten( )函数及函数用法详解,包括了Python中flatten( )函数及函数用法详解的使用技巧和注意事项,需要的朋友参考一下 flatten()函数用法 flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组。 flatten只能适用于numpy对象,即array或者mat,普通的list列表不适用!。 a.flatten
本文向大家介绍python中函数传参详解,包括了python中函数传参详解的使用技巧和注意事项,需要的朋友参考一下 一、参数传入规则 可变参数允许传入0个或任意个参数,在函数调用时自动组装成一个tuple; 关键字参数允许传入0个或任意个参数,在函数调用时自动组装成一个dict; 1. 传入可变参数: 以上定义函数,使用如下: 传入多个参数, 传入一个列表, 2.传入关键字参数: 同样,可以将预先
本文向大家介绍Python中函数参数匹配模型详解,包括了Python中函数参数匹配模型详解的使用技巧和注意事项,需要的朋友参考一下 当我们的函数接收参数为任意个,或者不能确定参数个数时,我们,可以利用 * 来定义任意数目的参数,这个函数调用时,其所有不匹配的位置参数会被赋值为元组,我们可以在函数利用循环或索引进行使用 示例结果: (1,) -------------------- 1 ======
本文向大家介绍python函数的5种参数详解,包括了python函数的5种参数详解的使用技巧和注意事项,需要的朋友参考一下 (1) 位置参数,调用函数时按位置传入参数 (2) 默认参数,即在函数定义时就给出参数的值,设置默认参数时要注意两点,一是必选参数在前,默认参数在后。二是把变化小的参数放在后面可作为默认参数。具有默认参数的函数被调用时可以不传入默认参数,若需要改变默认
本文向大家介绍详解Python中where()函数的用法,包括了详解Python中where()函数的用法的使用技巧和注意事项,需要的朋友参考一下 where()的用法 首先强调一下,where()函数对于不同的输入,返回的只是不同的。 1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组 2当数组是二维数组时,满足条件的数组值返回的是值的位置索引,因此会有两组索引数组来表示值的位置
本文向大家介绍Python字符串函数strip()原理及用法详解,包括了Python字符串函数strip()原理及用法详解的使用技巧和注意事项,需要的朋友参考一下 strip:用于移除字符串头尾指定的字符(默认为空格)或字符序列。注意:该方法只能删除开头或是结尾的字符,不能删除中间部分的字符。 语法:str.strip([chars]) str = "*****this is **string**