当前位置: 首页 > 编程笔记 >

Python数据可视化:泊松分布详解

林祯
2023-03-14
本文向大家介绍Python数据可视化:泊松分布详解,包括了Python数据可视化:泊松分布详解的使用技巧和注意事项,需要的朋友参考一下

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

代码实现:

 # Poisson分布
 x = np.random.poisson(lam=5, size=10000) # lam为λ size为k
 pillar = 15
 a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g', alpha=0.5)
 plt.plot(a[1][0:pillar], a[0], 'r')
 plt.grid()
 plt.show()

以上这篇Python数据可视化:泊松分布详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 在处理一组数据时,您通常想做的第一件事就是了解变量的分布情况。本教程的这一章将简要介绍seaborn中用于检查单变量和双变量分布的一些工具。 您可能还需要查看[categorical.html](categorical.html #categical-tutorial)章节中的函数示例,这些函数可以轻松地比较变量在其他变量级别上的分布。 import seaborn as sns import m

  • 本文向大家介绍Python数据可视化正态分布简单分析及实现代码,包括了Python数据可视化正态分布简单分析及实现代码的使用技巧和注意事项,需要的朋友参考一下 Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。 正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公

  • 本文向大家介绍Python数据可视化之画图,包括了Python数据可视化之画图的使用技巧和注意事项,需要的朋友参考一下 安装数据可视化模块matplotlib:pip install matplotlib 导入matplotlib模块下的pyplot 1 折线图 2 散点图 用两种方法 第一种:只需将函数polt换成scatter即可. 第二种方法:在polt函数里添加第三个参数 “o”. 可以更

  • 数据可视化工具 JS 库: d3 sigmajs **部件 & 组件:</h5> Chart.js C3.js Google Charts chartist-jsj amCharts [$] Highcharts [Non-commercial free to $] FusionCharts [$] ZingChart [free to $] Epoch 服务: Datawrapper infog

  • 在侧边导航栏点击 Visualize 开始视化您的数据。 Visualize 工具能让您通过多种方式浏览您的数据。例如:我们使用饼图这个重要的可视化控件来查看银行账户样本数据中的账户余额。点击屏幕中间的 Create a visualization 蓝色按钮开始。 有很多种可视化控件可供选择。我们点击其中一个名为 Pie 的。 您可以为已保存的搜索建立可视化效果,或者输入新的搜索条件。使用后者时,