1. 创建一个图
import networkx as nx g = nx.Graph() g.clear() #将图上元素清空
所有的构建复杂网络图的操作基本都围绕这个g来执行。
2. 节点
节点的名字可以是任意数据类型的,添加一个节点是
g.add_node(1) g.add_node("a") g.add_node("spam")
添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。
g.add_nodes_from([2,3]) or a = [2,3] g.add_nodes_from(a)
这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于
add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp: g.add_node("spam") #添加了一个名为spam的节点 g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m g.nodes() #可以将以上5个节点打印出来看看
加一组从0开始的连续数字的节点
H = nx.path_graph(10) g.add_nodes_from(H) #将0~9加入了节点 #但请勿使用g.add_node(H)
删除节点
与添加节点同理
g.remove_node(node_name) g.remove_nodes_from(nodes_list)
3. 边
边是由对应节点的名字的元组组成,加一条边
g.add_edge(1,2) e = (2,3) g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出
加一组边
g.add_edges_from([(1,2),(1,3)]) g.add_edges_from([("a","spam") , ("a",2)])
通过nx.path_graph(n)加一系列连续的边
n = 10 H = nx.path_graph(n) g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边
删除边
同理添加边的操作
g.remove_edge(edge) g.remove_edges_from(edges_list)
4. 查看图上点和边的信息
g.number_of_nodes() #查看点的数量 g.number_of_edges() #查看边的数量 g.nodes() #返回所有点的信息(list) g.edges() #返回所有边的信息(list中每个元素是一个tuple) g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回 g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性
method | explanation |
---|---|
Graph.has_node(n) | Return True if the graph contains the node n. |
Graph.__contains__(n) | Return True if n is a node, False otherwise. |
Graph.has_edge(u, v) | Return True if the edge (u,v) is in the graph. |
Graph.order() | Return the number of nodes in the graph. |
Graph.number_of_nodes() | Return the number of nodes in the graph. |
Graph.__len__() | Return the number of nodes. |
Graph.degree([nbunch, weight]) | Return the degree of a node or nodes. |
Graph.degree_iter([nbunch, weight]) | Return an iterator for (node, degree). |
Graph.size([weight]) | Return the number of edges. |
Graph.number_of_edges([u, v]) | Return the number of edges between two nodes. |
Graph.nodes_with_selfloops() | Return a list of nodes with self loops. |
Graph.selfloop_edges([data, default]) | Return a list of selfloop edges. |
Graph.number_of_selfloops() | Return the number of selfloop edges. |
5. 图的属性设置
为图赋予初始属性
g = nx.Graph(day="Monday") g.graph # {'day': 'Monday'}
修改图的属性
g.graph['day'] = 'Tuesday' g.graph # {'day': 'Tuesday'}
6. 点的属性设置
g.add_node('benz', money=10000, fuel="1.5L") print g.node['benz'] # {'fuel': '1.5L', 'money': 10000} print g.node['benz']['money'] # 10000 print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出
7. 边的属性设置
通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性
g.clear() n = 10 H = nx.path_graph(n) g.add_nodes_from(H) g.add_edges_from(H.edges()) g[1][2]['color'] = 'blue' g.add_edge(1, 2, weight=4.7) g.add_edges_from([(3,4),(4,5)], color='red') g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) g[1][2]['weight'] = 4.7 g.edge[1][2]['weight'] = 4
8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)
Directed graphs
DG = nx.DiGraph() DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边 print DG.out_degree(1) # 打印结果:2 表示:找到1的出度 print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了 print DG.successors(1) # [2,4] 表示1的后继节点有2和4 print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边
Multigraphs
简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边
MG=nx.MultiGraph() MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)]) print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5} GG=nx.Graph() for n,nbrs in MG.adjacency_iter(): for nbr,edict in nbrs.items(): minvalue=min([d['weight'] for d in edict.values()]) GG.add_edge(n,nbr, weight = minvalue) print nx.shortest_path(GG,1,3) # [1, 2, 3]
9. 图的遍历
g = nx.Graph() g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)]) for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性 print n, nbrs for nbr,eattr in nbrs.items(): # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素 data=eattr['weight'] if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))
10. 图生成和图上的一些操作
下方的这些操作都是在networkx包内的方法
subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch union(G1,G2) - graph union disjoint_union(G1,G2) - graph union assuming all nodes are different cartesian_product(G1,G2) - return Cartesian product graph compose(G1,G2) - combine graphs identifying nodes common to both complement(G) - graph complement create_empty_copy(G) - return an empty copy of the same graph class convert_to_undirected(G) - return an undirected representation of G convert_to_directed(G) - return a directed representation of G
11. 图上分析
g = nx.Graph() g.add_edges_from([(1,2), (1,3)]) g.add_node("spam") nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块 sorted(nx.degree(g).values())
通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程
>>> G=nx.Graph() >>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)] >>> G.add_weighted_edges_from(e) >>> print(nx.dijkstra_path(G,'a','d')) ['a', 'c', 'd']
12. 图的绘制
下面是4种图的构造方法,选择其中一个
nx.draw(g) nx.draw_random(g) #点随机分布 nx.draw_circular(g) #点的分布形成一个环 nx.draw_spectral(g)
最后将图形表现出来
import matplotlib.pyplot as plt plt.show()
将图片保存到下来
nx.draw(g) plt.savefig("path.png")
修改节点颜色,边的颜色
g = nx.cubical_graph() nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b') plt.show()
13. 图形种类的选择
Graph Type | NetworkX Class |
---|---|
简单无向图 | Graph() |
简单有向图 | DiGraph() |
有自环 | Grap(),DiGraph() |
有重边 | MultiGraph(), MultiDiGraph() |
reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
LCUI 实现了一些图形 API 用于解决组件的背景、边框和阴影的绘制问题。它们都依赖绘制上下文且都支持局部区域绘制,使得 LCUI 能够利用脏矩形机制和 OpenMP 并行渲染来提升渲染性能。 绘制背景 背景绘制参数被定义为LCUI_Background 结构体类型的对象,由 Background_Paint() 函数负责绘制。在下面的例子中,我们将画布中的区域 (200, 100, 400,
我将首先解释我试图实现的目标,然后解释我目前解决它的方法。我感谢任何有用的输入,即使它意味着从头开始。如果需要,我会添加更多代码或解释。 这将是更大的Android应用程序的一部分。这部分应该在一个可滚动的视图/布局中显示先前选定网络中的所有节点以及节点之间的关系。这些关系应该由节点之间的箭头描绘,显示每个节点在一定时间间隔内可以“听到”哪些节点。遗憾的是,节点必须是可点击的,因为您必须能够在该视
4.9 绘制网络结构图 CaseFile工具用来绘制网络结构图。使用该工具能快速添加和连接,并能以图形界面形式灵活的构建网络结构图。本节将介绍Maltego CaseFile的使用。 在使用CaseFile工具之前,需要修改系统使用的Java和Javac版本。因为CaseFile工具是用Java开发的,而且该工具必须运行在Java1.7.0版本上。但是在Kali Linux中,安装了JDK6和JD
本文向大家介绍python绘制规则网络图形实例,包括了python绘制规则网络图形实例的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说,直接上代码吧! 运行结果 注:random_regular_graph(d, n)方法可以生成一个含有n个节点,每个节点有d个邻居节点的规则图。本程序中生成了一个含有10个节点,每个节点有4个邻居节点的图形。 以上这篇python绘制规则网络图形实例就是小
依赖关系会迅速变得复杂起来,并且很容易形成 循环依赖(circular dependency) (即 A 依赖 B,B 又依赖 A),这将导致 Puppet 发生错误并停止工作。 幸运的是, Puppet 的 --graph 选项可以很容易生成一个资源之间的依赖关系图, 它可以帮助我们解决循环依赖的问题。 准备工作 使用如下命令安装查看图片文件所需的 graphviz 软件包: # apt-get
本文向大家介绍使用Python的networkx绘制精美网络图教程,包括了使用Python的networkx绘制精美网络图教程的使用技巧和注意事项,需要的朋友参考一下 最近因为数学建模3天速成Python,然后做了一道网络的题,要画网络图。在网上找了一些,发现都是一些很基础的丑陋红点图,并且关于网络的一些算法也没有讲,于是自己进http://networkx.github.io/学习了一下。以下仅