当我们的数据包含空值时,很难执行分析,我们可能会将这些空值转换为NA,以便我们了解不可用的值的数量。这可以通过使用单个方括号来完成。
请看以下具有一些空值的数据框-
> x1<-c(rep(c(1,2,3),times=5),"","","",2,1) > x2<-rep(c(2,4,"",4,""),each=4) > x3<-rep(c(5,4,2,""),times=c(2,5,3,10)) > df<-data.frame(x1,x2,x3) > df x1 x2 x3 1 1 2 5 2 2 2 5 3 3 2 4 4 1 2 4 5 2 4 4 6 3 4 4 7 1 4 4 8 2 4 2 9 3 2 10 1 2 11 2 12 3 13 1 4 14 2 4 15 3 4 16 4 17 18 19 2 20 1
将空值转换为NA-
> df[df == ""]<-NA > df x1 x2 x3 1 1 2 5 2 2 2 5 3 3 2 4 4 1 2 4 5 2 4 4 6 3 4 4 7 1 4 4 8 2 4 2 9 3 <NA> 2 10 1 <NA> 2 11 2 <NA> <NA> 12 3 <NA> <NA> 13 1 4 <NA> 14 2 4 <NA> 15 3 4 <NA> 16 <NA> 4 <NA> 17 <NA> <NA> <NA> 18 <NA> <NA> <NA> 19 2 <NA> <NA> 20 1 <NA> <NA>
本文向大家介绍如何在R中将数据帧转换为data.table?,包括了如何在R中将数据帧转换为data.table?的使用技巧和注意事项,需要的朋友参考一下 由于对data.table的操作有时比数据帧快,因此我们可能希望将数据帧转换为data.table对象。数据框和data.table之间的主要区别在于,数据框可在基础R中使用,但是要使用data.table,我们必须安装软件包data.tabl
问题内容: 我有一个要转换为json格式的数据框: 我的数据帧称为res1: 当我做: 我得到这个: 我需要这个json输出像这样,有什么想法吗? 问题答案: 怎么样 通过使用,我们实际上将大的data.frame分解为每一行的单独的data.frame。通过从结果列表中删除名称,该函数将结果包装在数组中,而不是命名对象中。
本文向大家介绍如何通过R中的行将数据帧值转换为向量?,包括了如何通过R中的行将数据帧值转换为向量?的使用技巧和注意事项,需要的朋友参考一下 数据可以任何形式提供给我们,但有可能不适合用于分析。有时数据记录在数据框中,但我们可能需要将其作为向量。在这种情况下,我们必须更改向量中数据帧的值。这可以通过在将数据帧与t换位后将它们读取为矢量来读取数据帧值来完成。 示例 请看以下数据帧- 让我们看另一个例子
本文向大家介绍如何将R数据帧中的字符串转换为NA?,包括了如何将R数据帧中的字符串转换为NA?的使用技巧和注意事项,需要的朋友参考一下 我们经常会在数据收集过程中发现错误,这些错误可能会导致研究结果不正确。当错误地收集数据时,将使分析师的工作变得困难。显示数据有错误的一种情况是获取字符串代替数字值。因此,我们需要将这些字符串转换为R中的NA,以便我们可以进行预期的分析。 示例 请看以下数据帧- 将
本文向大家介绍如何将NA替换为R数据帧中选定列的值?,包括了如何将NA替换为R数据帧中选定列的值?的使用技巧和注意事项,需要的朋友参考一下 在数据分析中,在数据框中查找某些NA值非常普遍,但如果包含NA值的列对分析无用,则所有NA值都不会产生问题。我们可以将所有NA值替换为0或将其他有用的列替换为其他值。 示例 请看以下数据帧- 将NA的连续列更改为零- 将NA的非连续列更改为零-
我用Avro(序列化器和反序列化器)收到Kafka主题的推文。然后,我创建了一个spark consumer,它在RDD[GenericRecord]的数据流中提取推文。现在,我想将每个rdd转换为数据帧,通过SQL分析这些推文。有什么解决方案可以将RDD[GenericRecord]转换为数据帧吗?