当前位置: 首页 > 编程笔记 >

Java 自旋锁(spinlock)相关知识总结

周苑博
2023-03-14
本文向大家介绍Java 自旋锁(spinlock)相关知识总结,包括了Java 自旋锁(spinlock)相关知识总结的使用技巧和注意事项,需要的朋友参考一下

一、前言

谈到『自旋锁』,可能大家会说,这有啥好讲的,不就是等待资源的线程"原地打转"嘛。嗯,字面理解的意思很到位,但能深入具体点吗?自旋锁的设计真就这么简单?

本文或者说本系列的目的,都是让大家不要停留在表面,而是深入分析,做到:

  • 灵活使用
  • 掌握原理
  • 优缺点

二、锁的优化:自旋锁

当多个线程想同时访问同一个资源时,就存在资源冲突,这时,大家最直接想到的就是加锁来互斥访问,加锁会有这么几个问题:

  1. 等待资源的线程进入睡眠,发生用户态向内核态的切换,有一定的性能开销;
  2. 占用资源的线程很快就用完并释放,这时等待的线程被唤醒,又要立即切换回用户态;

那么,如果有一种方式,使得等待的线程先短暂的等待一会儿,有可能有两种结果:

  1. 等待的时间超过了这一会儿,那没办法,只好进入睡眠;
  2. 等待的时间还未超过,占用资源的线程释放了,这时等待的线程就可以直接占用资源。

这就是锁的小优化:自旋锁! 自旋锁并不是真正的锁,而是让等待的线程先原地"小转"一下,小转一下,通常小转一下的实现方式很简单:

int SPIN_LOCK_NUM = 64;
int i = 0;
boolean wait = true;

do {
 wait = // 尝试获取资源锁
} while (wait && (++i) < SPIN_LOCK_NUM);

我们通过循环一定的次数来自旋。 \color{red}{但是我们也应该知道,不进入休眠而原地打转,是会一直消耗 CPU 资源的,因此,才有了自旋限制!}但是我们也应该知道,不进入休眠而原地打转,是会一直消耗CPU资源的,因此,才有了自旋限制!

看下面的JDK源码:

public final class Unsafe {
 public final int getAndSetInt(Object var1, long var2, int var4) {
  int var5;
  do {
   var5 = this.getIntVolatile(var1, var2);
  } while(!this.compareAndSwapInt(var1, var2, var5, var4));
 
  return var5;
 }
}

我们可以看到,CAS就是采用的自旋锁方式,持续的尝试读取最新的 volatile 修饰的变量的值,并尝试去用期望的值去比较,然后更新。

不过这里我们要注意,因为是无限循环,因此我们要保证占用资源的线程很快就能释放,而不是长时间占用(当然,因为这里的源码系统也设定了 int 型变量,因此,占用该变量的线程很快就会使用完而释放)。

三、自旋锁的死锁

啥?怎么会有死锁? 自旋锁虽然好用,若我们只是停留在上面的分析,那么还是很肤浅的;虽然自旋锁有很大的优势,但同样缺点也不少,除了上面说的,原地打转(忙等待)会一直消耗CPU资源,同时,还会有一个潜在的可能缺陷:死锁。

3.1、系统中断

在聊死锁之前,我们需要先了解一下系统中断事件(大学课本里有这一章节,ASM汇编中也涉及到系统中断向量表):

中断是指,CPU正常运行期间,由于有内/外部事件,或者由程序预先安排的事件,引起CPU暂停当前工作,转而去处理该事件,当处理完该事件后再返回继续运行被中断(暂停)的程序。通常,操作系统将中断分为两类:外部中断(硬件中断)和内部中断(异常中断,即软件引起的);

例如:由IO设备引起的中断为硬件中断,比如,键盘输入,硬盘/光驱读写等;异常中断很好理解,比如 NullPointerException 等。

3.2、中断处理程序

系统提供了一个API使得我们的程序能够向系统申请注册一个中断处理程序(例如:程序接收用户的输入事件)。

request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev)

参数含义如下:

  • irq: 中断号,系统定义好,具体可查看中断向量表;
  • handler: 中断后发生的ISR(Interrupt Service Routines),直接翻译为:中断服务路由;实际类似,是响应中断服务的程序;
  • flags: 中断标志;
  • name: 中断相关的设备的ASCII,如:"keyboard",这些名字会在 /proc/irq 和 /proc/interrupts 中使用;
  • dev: 用于共享中断线,传递驱动程序的设备结构。非共享类型的中断,直接设置成为 NULL

中断标志(flags):

  • IRQF_DISABLED: 内核处理该ISR期间,禁止其它中断(一般很少使用);
  • IRQF_SAMPLE_RANDOM: 表明该设备产生的中断对内核熵池有贡献;
  • IRQF_TIMER: 系统定时器;
  • IRQF_SHARED: 多个ISR共享中断线,即一个中断,可存在多个ISR;

调用 request_irq 成功时返回0,常见错误是 -EBUSY,表示给定的中断线已经在使用(没有指定IRQF_SHARED)。

注:

  1. 该函数可能引起睡眠,所以不允许在中断上下文或者不允许睡眠的程序中使用!
  2. Linux 中的中断处理程序是无须重入的。当给定的中断处理程序正在执行的时候,其中断线在所有的处理器上都会被屏蔽掉,以防在同一个中断线上又接收到另一个新的中断。通常情况下,除了该中断的其他中断都是打开的,也就是说其他的中断线上的重点都能够被处理,但是当前的中断线总是被禁止的,故,同一个中断处理程序是绝对不会被自己嵌套的。

那这和死锁有何关系呢?额,下一小节会谈到。但这里之所有提到中断,是因为我们还要知道一件事,当系统产生中断,程序被暂停时,程序是不能进入休眠的,此时程序只能采用一种方式:自旋,来保证不会睡眠。

为何不能睡眠?这里就涉及到『中断上下文 context』!

3.3、中断上下文 Context

上面说了,request_irq 可能引起睡眠,所以不允许在中断上下文中使用,也就是说,中断上下文不允许睡眠!

中断上下文:它与进程上下文不一样,中断上下文是内核正在执行ISR。ISR没有自己独立的栈,而是使用内核栈,大小一般是有限制的(32位是8KB大小)。同时,ISR是打断了正常的程序流程,因此必须保证ISR执行速度快。正因为要执行速度快,所以,中断上下文不允许睡眠,且不允许被阻塞!

大家可能会说了,执行速度快不允许睡眠,这解释不合理,我睡眠个1ms不行么?嗯,下面我们就来分析下不能睡眠的真正原因:

1.中断处理时,不会发生进程切换。

  • 因为能打断当前中断的只可能是更高优先级的中断,其它进程的优先级是不会比中断优先级更高的;
  • 如果中断上下文休眠,则没有办法唤醒它,因为所有的 wake_up_xxx 是针对进程而言,而中断没有进程的概念;
  • 只要是中断(硬中or软中,不是香烟),都发生在内核,如果中断上下文睡眠了,内核就阻塞了,系统能阻塞么?不能!阻塞了你就只能重启机器了;

2.schedule 在切换进程时,会保存当前的进程上下文(CPU寄存器的值、状态、堆栈SP内容)以便以后恢复再运行。中断发生后,内核会保存当前被中断进程的上下文。在ISR中,是中断上下文,如果休眠或阻塞,则会调用 schedule,保存的进程上下文不是当前进程的上下文,所以不能在ISR中调用 schedule;
3.内核中 schedule 在进入时会判断是否处于中断上下文:

if(unlikely(in_interrupt()))) ..... crash!!!

4.中断 handler 会使用被中断的进程内核堆栈,但不会对其有任何影响,因为 handler用之前会保存,用完后会清除并恢复原貌;
5.处理中断上下文中,内核是不可抢占的,如果休眠,则内核....一定会被挂起,同样,你只能重启机器了;
所以,被中断的程序也不能睡眠!那么只能使用『自旋锁』来原地打转。

那还是没有说自旋为何会死锁?

自旋锁是不能递归,否则自己等待自己已经获取的锁,将会导致死锁!

一个线程获取了一个自旋锁,在执行这程中被中断处理程序打断,因此该线程只是暂停执行,并未退出,仍持有自旋锁;而中断处理程序尝试获取自旋锁而获取不到,只能自旋;这就造成一个事实:ISR拿不到自旋锁,导致自旋而无法退出,该线程被中断无法恢复执行至退出释放自旋锁,此时就造成了死锁,导致系统崩溃。

四、死锁解决

发生自旋锁死锁,往往因为单CPU这个临界资源发生了抢占,使得一方持有自旋锁被中断暂停,一方不断自旋来尝试获取自旋锁。因此,在多CPU架构下,两方如果分别运行在不同CPU上,是不会发生死锁的。

因此,自旋锁有几个重要特性需要掌握(精髓):

  • 持有自旋锁的线程(此时肯定在临界区)不能休眠,休眠会引起进程切换,CPU就会被另一个进程占用等无法使用;
  • 持有自旋锁的线程不允许被中断,哪怕是ISR也不行,否则就存在ISR自旋;
  • 持有自旋锁的线程,其内核不能被抢占,否则等同于CPU被抢占;

所以,根据以上总结一点:持有自旋锁的线程,不能因为任何原因而放弃CPU! 也因此基于上述问题,自旋也需要添加一个上限时间以防死锁。

linux上的自旋锁有三种实现:

  1. 在单cpu,不可抢占内核中,自旋锁为空操作。
  2. 在单cpu,可抢占内核中,自旋锁实现为“禁止内核抢占”,并不实现“自旋”。(注意)
  3. 在多cpu,可抢占内核中,自旋锁实现为“禁止内核抢占” + “自旋”。

以上就是Java 自旋锁(spinlock)相关知识总结的详细内容,更多关于Java 自旋锁(spinlock)的资料请关注小牛知识库其它相关文章!

 类似资料:
  • Java 相关知识点汇总,包括 Java 基础、Java 容器、Java 并发、JVM、编程规范、数据结构与算法、数据库、系统设计、设计模式、数据通信、网站架构、备战面试、Github 榜单。

  • 本文向大家介绍JAVA 枚举相关知识汇总,包括了JAVA 枚举相关知识汇总的使用技巧和注意事项,需要的朋友参考一下 Java 枚举 知识点 概念 enum 的全称为 enumeration, 是 JDK 1.5 中引入的新特性。 在Java中,被 enum 关键字修饰的类型就是枚举类型。形式如下: 如果枚举不添加任何方法,枚举值默认为从0开始的有序数值。以 Color 枚举类型举例,它的枚举常量依

  • 本文向大家介绍JSON相关知识汇总,包括了JSON相关知识汇总的使用技巧和注意事项,需要的朋友参考一下 JSON:JavaScript 对象表示法(JavaScript Object Notation) JSON 语法规则   数据在名称/值对中   数据由逗号分隔   花括号保存对象   方括号保存数组 JSON有6种类型的值:   对象、数组、字符串、数字、布尔值、null JSON对象是一个

  • 本文向大家介绍JAVA内存空间相关知识汇总,包括了JAVA内存空间相关知识汇总的使用技巧和注意事项,需要的朋友参考一下 Java内存分配与管理是Java的核心技术之一,之前我们曾介绍过Java的内存管理与内存泄露以及Java垃圾回收方面的知识,今天我们再次深入Java核心,详细介绍一下Java在内存分配方面的知识。一般Java在内存分配时会涉及到以下区域: ◆寄存器:我们在程序中无法控制 ◆栈:存

  • 本文向大家介绍jQuery中Form相关知识汇总,包括了jQuery中Form相关知识汇总的使用技巧和注意事项,需要的朋友参考一下 form中的单行文本获取和失去焦点 更改多行文本的高度 更改多行文本的滚动条高度 复选框应用

  • 线程是程序中一个单一的顺序控制流程。进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。 进程是正在运行的程序的实例,或者:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。

  • 本文向大家介绍Java IO流相关知识代码解析,包括了Java IO流相关知识代码解析的使用技巧和注意事项,需要的朋友参考一下 一、IO流的分类 字符流 Reader InputStreamReader(节点流) BufferedReader(处理流) Writer OutputStreamWriter(节点流) BufferedWriter(处理流) PrintWriter 字节流 InputS

  • 本文向大家介绍Lua中的函数相关知识点整理汇总,包括了Lua中的函数相关知识点整理汇总的使用技巧和注意事项,需要的朋友参考一下  函数是一组一起执行任务的语句。可以把代码放到独立的函数中。怎么划分代码功能之间的不同,但在逻辑上划分通常是让每个函数执行特定的任务。 Lua语言提供了程序可以调用大量的内置方法。例如,方法print()打印作为输入传参数在控制台中。 函数是已知的各种名称,如方法或子程序