当前位置: 首页 > 编程笔记 >

python多进程提取处理大量文本的关键词方法

符渊
2023-03-14
本文向大家介绍python多进程提取处理大量文本的关键词方法,包括了python多进程提取处理大量文本的关键词方法的使用技巧和注意事项,需要的朋友参考一下

经常需要通过python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。

python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。

实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。

代码如下:

#coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from multiprocessing import Pool,Queue,Process
import multiprocessing as mp 
import time,random
import os
import codecs
import jieba.analyse
jieba.analyse.set_stop_words("yy_stop_words.txt")
def extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#print("key words:{kw}".format(kw=" ".join(tags)))
	return tags
#def parallel_extract_keyword(input_string,out_file):
def parallel_extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#time.sleep(random.random())
	#print("key words:{kw}".format(kw=" ".join(tags)))
	#o_f = open(out_file,'w')
	#o_f.write(" ".join(tags)+"\n")
	return tags
if __name__ == "__main__":
	data_file = sys.argv[1]
	with codecs.open(data_file) as f:
		lines = f.readlines()
		f.close()
	
	out_put = data_file.split('.')[0] +"_tags.txt" 
	t0 = time.time()
	for line in lines:
		parallel_extract_keyword(line)
		#parallel_extract_keyword(line,out_put)
		#extract_keyword(line)
	print("串行处理花费时间{t}".format(t=time.time()-t0))
	
	pool = Pool(processes=int(mp.cpu_count()*0.7))
	t1 = time.time()
	#for line in lines:
		#pool.apply_async(parallel_extract_keyword,(line,out_put))
	#保存处理的结果,可以方便输出到文件
	res = pool.map(parallel_extract_keyword,lines)
	#print("Print keywords:")
	#for tag in res:
		#print(" ".join(tag))
	pool.close()
	pool.join()
	print("并行处理花费时间{t}s".format(t=time.time()-t1))

运行:

python data_process_by_multiprocess.py message.txt

message.txt是每行是一个文档,共581行,7M的数据

运行时间:

不使用sleep来挂起进程,也就是把time.sleep(random.random())注释掉,运行可以大大节省时间。

以上这篇python多进程提取处理大量文本的关键词方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python提取内容关键词的方法,包括了python提取内容关键词的方法的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了python提取内容关键词的方法。分享给大家供大家参考。具体分析如下: 一个非常高效的提取内容关键词的python代码,这段代码只能用于英文文章内容,中文因为要分词,这段代码就无能为力了,不过要加上分词功能,效果和英文是一样的。 希望本文所述对大家的Pyth

  • 本文向大家介绍python TF-IDF算法实现文本关键词提取,包括了python TF-IDF算法实现文本关键词提取的使用技巧和注意事项,需要的朋友参考一下 TF(Term Frequency)词频,在文章中出现次数最多的词,然而文章中出现次数较多的词并不一定就是关键词,比如常见的对文章本身并没有多大意义的停用词。所以我们需要一个重要性调整系数来衡量一个词是不是常见词。该权重为IDF(Inver

  • 问题内容: 我有一个充满关键字的索引,根据这些关键字,我想从输入文本中提取关键字。 以下是示例关键字索引。请注意,关键字也可以是多个单词,或者基本上是唯一的标签。 现在,如果输入文本为 “我在Facebook上看到了借贷俱乐部的新闻,您的故事和法定人数” ,则搜索结果应为 [“借贷俱乐部”,“ facebook”,“您的故事”,“法定人数”] 。此外,搜索应 区分大小写 问题答案: 只有一种真正的

  • 本文向大家介绍Python文本处理之按行处理大文件的方法,包括了Python文本处理之按行处理大文件的方法的使用技巧和注意事项,需要的朋友参考一下 以行的形式读出一个文件最简单的方式是使用文件对象的readline()、readlines()和xreadlines()方法。 Python2.2+为这种频繁的操作提供了一个简化的语法——让文件对象自身在行上高效迭代(这种迭代是严格的向前的)。 为了读

  • 本文向大家介绍python实现关键词提取的示例讲解,包括了python实现关键词提取的示例讲解的使用技巧和注意事项,需要的朋友参考一下 新人小菜鸟又来写博客啦!!!没人表示不开心~~(>_<)~~ 今天我来弄一个简单的关键词提取的代码 文章内容关键词的提取分为三大步: (1) 分词 (2) 去停用词 (3) 关键词提取 分词方法有很多,我这里就选择常用的结巴jieba分词;去停用词,我用了一个停用

  • 问题:我有一个类似DAG(有向无环图)的结构,用于在机器上开始执行一些海量数据处理。某些流程只能在其父级数据处理完成时启动,因为存在多级处理。我想首先使用python多处理库在一台机器上处理它的所有内容,然后使用管理器在不同的机器上扩展执行。我以前没有python多处理的经验。有人能建议这是一个好的图书馆吗?如果是,一些基本的实现想法就可以了。如果不是,在python中还有什么可以用来做这件事?