接触Python也有一段时间了,Python相关的框架和模块也接触了不少,希望把自己接触到的自己 觉得比较好的设计和实现分享给大家,于是取了一个“Charming Python”的小标,算是给自己开了一个头吧, 希望大家多多批评指正。 :)
from flask import request
Flask 是一个人气非常高的Python Web框架,笔者也拿它写过一些大大小小的项目,Flask 有一个特性我非常的喜欢,就是无论在什么地方,如果你想要获取当前的request对象,只要 简单的:
from flask import request# 从当前request获取内容 request.args request.forms request.cookies ... ...
两个疑问?
在我们往下看之前,我们先提出两个疑问:
疑问一 : request ,看上去只像是一个静态的类实例,我们为什么可以直接使用request.args 这样的表达式来获取当前request的args属性,而不用使用比如:
from flask import get_request# 获取当前request request = get_request() get_request().args
疑问二 : 在真正的生产环境中,同一个工作进程下面可能有很多个线程(又或者是协程), 就像我刚刚所说的,request这个类实例是怎么在这样的环境下正常工作的呢?
要知道其中的秘密,我们只能从flask的源码开始看了。
源码,源码,还是源码
首先我们打开flask的源码,从最开始的__init__.py来看看request是怎么出来的:
# File: flask/__init__.py from .globals import current_app, g, request, session, _request_ctx_stack# File: flask/globals.py from functools import partial from werkzeug.local import LocalStack, LocalProxy
def _lookup_req_object(name): top = _request_ctx_stack.top if top is None: raise RuntimeError('working outside of request context') return getattr(top, name)
# context locals _request_ctx_stack = LocalStack() request = LocalProxy(partial(_lookup_req_object, 'request'))
我们可以看到flask的request是从globals.py引入的,而这里的定义request的代码为 request = LocalProxy(partial(_lookup_req_object, 'request')) , 如果有不了解 partial是什么东西的同学需要先补下课,首先需要了解一下 partial 。
不过我们可以简单的理解为 partial(func, 'request') 就是使用 'request' 作为func的第一个默认参数来产生另外一个function。
所以, partial(_lookup_req_object, 'request') 我们可以理解为:
生成一个callable的function,这个function主要是从 _request_ctx_stack 这个LocalStack对象获取堆栈顶部的第一个RequestContext对象,然后返回这个对象的request属性。
这个werkzeug下的LocalProxy引起了我们的注意,让我们来看看它是什么吧:
@implements_bool class LocalProxy(object): """Acts as a proxy for a werkzeug local. Forwards all operations to a proxied object. The only operations not supported for forwarding are right handed operands and any kind of assignment. ... ...
看前几句介绍就能知道它主要是做什么的了,顾名思义,LocalProxy主要是就一个Proxy, 一个为werkzeug的Local对象服务的代理。他把所以作用到自己的操作全部“转发”到 它所代理的对象上去。
那么,这个Proxy通过Python是怎么实现的呢?答案就在源码里:
# 为了方便说明,我对代码进行了一些删减和改动@implements_bool class LocalProxy(object): __slots__ = ('__local', '__dict__', '__name__')
def __init__(self, local, name=None): # 这里有一个点需要注意一下,通过了__setattr__方法,self的 # "_LocalProxy__local" 属性被设置成了local,你可能会好奇 # 这个属性名称为什么这么奇怪,其实这是因为Python不支持真正的 # Private member,具体可以参见官方文档: # http://docs.python.org/2/tutorial/classes.html#private-variables-and-class-local-references # 在这里你只要把它当做 self.__local = local 就可以了 :) object.__setattr__(self, '_LocalProxy__local', local) object.__setattr__(self, '__name__', name)
def _get_current_object(self): """ 获取当前被代理的真正对象,一般情况下不会主动调用这个方法,除非你因为 某些性能原因需要获取做这个被代理的真正对象,或者你需要把它用来另外的 地方。 """ # 这里主要是判断代理的对象是不是一个werkzeug的Local对象,在我们分析request # 的过程中,不会用到这块逻辑。 if not hasattr(self.__local, '__release_local__'): # 从LocalProxy(partial(_lookup_req_object, 'request'))看来 # 通过调用self.__local()方法,我们得到了 partial(_lookup_req_object, 'request')() # 也就是 ``_request_ctx_stack.top.request`` return self.__local() try: return getattr(self.__local, self.__name__) except AttributeError: raise RuntimeError('no object bound to %s' % self.__name__)
# 接下来就是一大段一段的Python的魔法方法了,Local Proxy重载了(几乎)?所有Python # 内建魔法方法,让所有的关于他自己的operations都指向到了_get_current_object() # 所返回的对象,也就是真正的被代理对象。
... ... __setattr__ = lambda x, n, v: setattr(x._get_current_object(), n, v) __delattr__ = lambda x, n: delattr(x._get_current_object(), n) __str__ = lambda x: str(x._get_current_object()) __lt__ = lambda x, o: x._get_current_object() < o __le__ = lambda x, o: x._get_current_object() <= o __eq__ = lambda x, o: x._get_current_object() == o __ne__ = lambda x, o: x._get_current_object() != o __gt__ = lambda x, o: x._get_current_object() > o __ge__ = lambda x, o: x._get_current_object() >= o ... ...
事情到了这里,我们在文章开头的第二个疑问就能够得到解答了,我们之所以不需要使用get_request() 这样的方法调用来获取当前的request对象,都是LocalProxy的功劳。
LocalProxy作为一个代理,通过自定义魔法方法。代理了我们对于request的所有操作, 使之指向到真正的request对象。
怎么样,现在知道了 request.args 不是它看上去那么简简单单的吧。
现在,让我们来看看第二个问题,在多线程的环境下,request是怎么正常工作的呢? 还是让我们回到globals.py吧:
from functools import partial from werkzeug.local import LocalStack, LocalProxydef _lookup_req_object(name): top = _request_ctx_stack.top if top is None: raise RuntimeError('working outside of request context') return getattr(top, name)
# context locals _request_ctx_stack = LocalStack() request = LocalProxy(partial(_lookup_req_object, 'request'))
问题的关键就在于这个 _request_ctx_stack 对象了,让我们找到LocalStack的源码:
class LocalStack(object):def __init__(self): # 其实LocalStack主要还是用到了另外一个Local类 # 它的一些关键的方法也被代理到了这个Local类上 # 相对于Local类来说,它多实现了一些和堆栈“Stack”相关方法,比如push、pop之类 # 所以,我们只要直接看Local代码就可以 self._local = Local()
... ...
@property def top(self): """ 返回堆栈顶部的对象 """ try: return self._local.stack[-1] except (AttributeError, IndexError): return None
# 所以,当我们调用_request_ctx_stack.top时,其实是调用了 _request_ctx_stack._local.stack[-1] # 让我们来看看Local类是怎么实现的吧,不过在这之前我们得先看一下下面出现的get_ident方法
# 首先尝试着从greenlet导入getcurrent方法,这是因为如果flask跑在了像gevent这种容器下的时候 # 所以的请求都是以greenlet作为最小单位,而不是thread线程。 try: from greenlet import getcurrent as get_ident except ImportError: try: from thread import get_ident except ImportError: from _thread import get_ident
# 总之,这个get_ident方法将会返回当前的协程/线程ID,这对于每一个请求都是唯一的
class Local(object): __slots__ = ('__storage__', '__ident_func__')
def __init__(self): object.__setattr__(self, '__storage__', {}) object.__setattr__(self, '__ident_func__', get_ident)
... ...
# 问题的关键就在于Local类重载了__getattr__和__setattr__这两个魔法方法
def __getattr__(self, name): try: # 在这里我们返回调用了self.__ident_func__(),也就是当前的唯一ID # 来作为__storage__的key return self.__storage__[self.__ident_func__()][name] except KeyError: raise AttributeError(name)
def __setattr__(self, name, value): ident = self.__ident_func__() storage = self.__storage__ try: storage[ident][name] = value except KeyError: storage[ident] = {name: value}
... ...
# 重载了这两个魔法方法之后
# Local().some_value 不再是它看上去那么简单了: # 首先我们先调用get_ident方法来获取当前运行的线程/协程ID # 然后获取这个ID空间下的some_value属性,就像这样: # # Local().some_value -> Local()[current_thread_id()].some_value # # 设置属性的时候也是这个道理
通过这些分析,相信疑问二也得到了解决,通过使用了当前的线程/协程ID,加上重载一些魔法 方法,Flask实现了让不同工作线程都使用了自己的那一份stack对象。这样保证了request的正常 工作。
说到这里,这篇文章也差不多了。我们可以看到,为了使用者的方便,作为框架和工具的开发者 需要付出很多额外的工作,有时候,使用一些语言上的魔法是无法避免的,Python在这方面也有着 相当不错的支持。
我们所需要做到的就是,学习掌握好Python中那些魔法的部分,使用魔法来让自己的代码更简洁, 使用更方便。
但是要记住,魔法虽然炫,千万不要滥用哦。
Python 中的对象都有诸如 __init__() 这样的方法,它们都有各自特定的用途,却 无法直接被调用。虽然无法被直接调用,实际上你却经常在使用这些方法,比如创建对象实例式 就调用了 __new__() 和 __init__ 方法。那么这些魔法方法还有那些其它的有趣用法呢? 操作符重载 Python 中的操作符运算实际上都是在隐式地调用这些魔法方法,如果你重写了对应的魔法方法, 就能修改操作
Python 中有很多 __ 开始和结尾的特殊方法,它们多是所有类型都拥有的,通过实现这些 特殊方法可以实现很多有意思的功能,比如最常使用的 __str__、__repr__ 和 __unicode__ 这三个就可以用于输出对象的字符串结果。 GitHub 上有篇翻译不错: 翻译 原文 魔术方法与语法糖 Lisp 的语法极其简单,主要语法“S 表达式”非常接近于数学中的波兰表达式,写法如下: (+
本文向大家介绍Python魔法方法详解,包括了Python魔法方法详解的使用技巧和注意事项,需要的朋友参考一下 据说,Python 的对象天生拥有一些神奇的方法,它们总被双下划线所包围,他们是面向对象的 Python 的一切。 他们是可以给你的类增加魔力的特殊方法,如果你的对象实现(重载)了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,你可以定义自己想要的行为,而这一
本文向大家介绍深入理解Java中HashCode方法,包括了深入理解Java中HashCode方法的使用技巧和注意事项,需要的朋友参考一下 关于hashCode,维基百科中: hashCode就是根据存储在一个对象实例中的所有数据,提取出一个32位的整数,该整数的目的是用来标示该实例的唯一性。有点类似于MD5码,每个文件都能通过MD5算法生成一个唯一的MD5码。不过,Java中的hashCode并
本文向大家介绍Python中的__new__与__init__魔术方法理解笔记,包括了Python中的__new__与__init__魔术方法理解笔记的使用技巧和注意事项,需要的朋友参考一下 很喜欢Python这门语言。在看过语法后学习了Django 这个 Web 开发框架。算是对 Python 有些熟悉了。不过对里面很多东西还是不知道,因为用的少。今天学习了两个魔术方法:__new__ 和 __
本文向大家介绍深入理解Python中装饰器的用法,包括了深入理解Python中装饰器的用法的使用技巧和注意事项,需要的朋友参考一下 因为函数或类都是对象,它们也能被四处传递。它们又是可变对象,可以被更改。在函数或类对象创建后但绑定到名字前更改之的行为为装饰(decorator)。 “装饰器”后隐藏了两种意思——一是函数起了装饰作用,例如,执行真正的工作,另一个是依附于装饰器语法的表达式,例如,at