首先创建scrapy项目
命令:scrapy startproject douban_read
创建spider
命令:scrapy genspider douban_spider url
网址:https://read.douban.com/charts
关键注释代码中有,若有不足,请多指教
scrapy项目目录结构如下
douban_spider.py文件代码
爬虫文件
import scrapy import re, json from ..items import DoubanReadItem class DoubanSpiderSpider(scrapy.Spider): name = 'douban_spider' # allowed_domains = ['www'] start_urls = ['https://read.douban.com/charts'] def parse(self, response): # print(response.text) # 获取图书分类的url type_urls = response.xpath('//div[@class="rankings-nav"]/a[position()>1]/@href').extract() # print(type_urls) for type_url in type_urls: # /charts?type=unfinished_column&index=featured&dcs=charts&dcm=charts-nav part_param = re.search(r'charts\?(.*?)&dcs', type_url).group(1) # https://read.douban.com/j/index//charts?type=intermediate_finalized&index=science_fiction&verbose=1 ajax_url = 'https://read.douban.com/j/index//charts?{}&verbose=1'.format(part_param) yield scrapy.Request(ajax_url, callback=self.parse_ajax, encoding='utf-8', meta={'request_type': 'ajax'}) def parse_ajax(self, response): # print(response.text) # 获取分类中图书的json数据 json_data = json.loads(response.text) for data in json_data['list']: item = DoubanReadItem() item['book_id'] = data['works']['id'] item['book_url'] = data['works']['url'] item['book_title'] = data['works']['title'] item['book_author'] = data['works']['author'] item['book_cover_image'] = data['works']['cover'] item['book_abstract'] = data['works']['abstract'] item['book_wordCount'] = data['works']['wordCount'] item['book_kinds'] = data['works']['kinds'] # 把item yield给Itempipeline yield item
item.py文件代码
项目的目标文件
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class DoubanReadItem(scrapy.Item): # define the fields for your item here like: book_id = scrapy.Field() book_url = scrapy.Field() book_title = scrapy.Field() book_author = scrapy.Field() book_cover_image = scrapy.Field() book_abstract = scrapy.Field() book_wordCount = scrapy.Field() book_kinds = scrapy.Field()
my_download_middle.py文件代码
所有request都会经过下载中间件,可以通过定制中间件,来完成设置代理,动态设置请求头,自定义下载等操作
import random import time from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from scrapy.http.response.html import HtmlResponse class MymiddleWares(object): def __init__(self): # 请求头列表 self.USER_AGENT_LIST = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24" ] def process_request(self, request, spider): ''' 下载中间件处理requests的方法 :param request:马上要被下载器下载request :param spider: :return: ''' # 在spider中设置了meta的request_type的值为ajax meta参数会贯穿整个scrapy request_type = request.meta.get('request_type') # 如果不是ajax请求就需要通过selenium来自定义下载request if not request_type: print('in middler') # 1、创建driver driver = webdriver.Chrome() # 2、请求url driver.get(request.url) # 3、等待 # driver.implicitly_wait(20) time.sleep(3) # 4、获取页面内容 html_str = driver.page_source # 直接返回HtmlResponse给spider解析 下载器就不会下载这个request 达到自定义下载的目的 return HtmlResponse(url=request.url, body=html_str, request=request, encoding='utf-8') else: # 如果是ajax请求就需要通过scrapy下载器来下载request # ajax请求直接返回json数据不适合上面的selenium下载 ua = random.choice(self.USER_AGENT_LIST) # 设置请求头 if ua: request.headers.setdefault('User-Agent', ua) request.headers.setdefault('X-Requested-With', 'XMLHttpRequest')
pipeline.py文件代码
项目的管道文件
import pymongo from itemadapter import ItemAdapter class MongoPipeline: # 存储集合名字 collection_name = 'book' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'items') ) def open_spider(self, spider): ''' 当spider启动的时候调用 :param spider: :return: ''' self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close_spider(self, spider): self.client.close() # 保存到mongo的douban_read数据库下的book集合中 def process_item(self, item, spider): self.db[self.collection_name].update({'book_id': item['book_id']}, {'$set': dict(item)}, True) # True:有则修改 无则新增 print(item) return item
settings.py文件代码
配置信息
# Scrapy settings for douban_read project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'douban_read' SPIDER_MODULES = ['douban_read.spiders'] NEWSPIDER_MODULE = 'douban_read.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'douban_read (+http://www.yourdomain.com)' # Obey robots.txt rules # robot协议 ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: # 默认请求头 DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36', } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'douban_read.middlewares.DoubanReadSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # 配置下载器中间件 DOWNLOADER_MIDDLEWARES = { 'douban_read.my_download_middle.MymiddleWares': 543, } # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html # 配置ITEM_PIPELINES ITEM_PIPELINES = { 'douban_read.pipelines.MongoPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # 配置mongo MONGO_URI = 'localhost' # 创建数据库:douban_read MONGO_DATABASE = 'douban_read'
最后启动该项目即可
scrapy crawl douban_spider
数据就保存到mongo数据库了
总结
到此这篇关于scrapy利用selenium爬取豆瓣阅读的文章就介绍到这了,更多相关scrapy用selenium爬取豆瓣阅读内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!
本文向大家介绍实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250,包括了实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250的使用技巧和注意事项,需要的朋友参考一下 安装部署Scrapy 在安装Scrapy前首先需要确定的是已经安装好了Python(目前Scrapy支持Python2.5,Python2.6和Python2.7)。官方文档中介绍了三种方法进行安装,我采用的
本文向大家介绍Python爬豆瓣电影实例,包括了Python爬豆瓣电影实例的使用技巧和注意事项,需要的朋友参考一下 文件结构 html_downloader.py - 下载网页html内容 html_outputer.py - 输出结果到文件中 html_parser.py: 解析器:解析html的dom树 spider_main.py - 主函数 综述 其实就是使用了urllib2和Beauti
通过本案例[豆瓣电影Top250信息爬取]锻炼除正则表达式之外三种信息解析方式:Xpath、BeautifulSoup和PyQuery。 爬取url地址:https://movie.douban.com/top250 分析: 分析url地址:https://movie.douban.com/top250 每页25条数据,共计10页 第一页:https://movie.douban.com/top2
本文向大家介绍Python制作豆瓣图片的爬虫,包括了Python制作豆瓣图片的爬虫的使用技巧和注意事项,需要的朋友参考一下 前段时间自学了一段时间的Python,想着浓一点项目来练练手。看着大佬们一说就是爬了100W+的数据就非常的羡慕,不过对于我这种初学者来说,也就爬一爬图片。 我相信很多人的第一个爬虫程序都是爬去贴吧的图片,嗯,我平时不玩贴吧,加上我觉得豆瓣挺良心的,我就爬了豆瓣首页上
本文向大家介绍Python多线程爬取豆瓣影评API接口,包括了Python多线程爬取豆瓣影评API接口的使用技巧和注意事项,需要的朋友参考一下 爬虫库 使用简单的requests库,这是一个阻塞的库,速度比较慢。 解析使用XPATH表达式 总体采用类的形式 多线程 使用concurrent.future并发模块,建立线程池,把future对象扔进去执行即可实现并发爬取效果 数据存储 使用Pytho
本文向大家介绍Java基于WebMagic爬取某豆瓣电影评论的实现,包括了Java基于WebMagic爬取某豆瓣电影评论的实现的使用技巧和注意事项,需要的朋友参考一下 目的 搭建爬虫平台,爬取某豆瓣电影的评论信息。 准备 webmagic是一个开源的Java垂直爬虫框架,目标是简化爬虫的开发流程,让开发者专注于逻辑功能的开发。webmagic的核心非常简单,但是覆盖爬虫的整个流程,也是很好的学习爬