相关概念
同步和异步
描述的是用户线程与内核的交互方式:
阻塞和非阻塞
描述的是用户线程调用内核 I/O 操作的方式:
一个 I/O 操作其实分成了两个步骤:发起 I/O 请求和实际的 I/O 操作。 阻塞 I/O 和非阻塞 I/O 的区别在于第一步,发起 I/O 请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞 I/O ,如果不阻塞,那么就是非阻塞 I/O 。 同步 I/O 和异步 I/O 的区别就在于第二个步骤是否阻塞,如果实际的 I/O 读写阻塞请求进程,那么就是同步 I/O 。
Unix I/O 模型
Unix 下共有五种 I/O 模型:
阻塞 I/O
请求无法立即完成则保持阻塞。
阶段1:等待数据就绪。网络 I/O 的情况就是等待远端数据陆续抵达;磁盘I/O的情况就是等待磁盘数据从磁盘上读取到内核态内存中。
阶段2:数据从内核拷贝到进程。出于系统安全,用户态的程序没有权限直接读取内核态内存,因此内核负责把内核态内存中的数据拷贝一份到用户态内存中。
非阻塞 I/O
一般很少直接使用这种模型,而是在其他 I/O 模型中使用非阻塞 I/O 这一特性。这种方式对单个 I/O 请求意义不大,但给 I/O 多路复用铺平了道路.
I/O 复用(异步阻塞 I/O)
I/O 多路复用会用到 select 或者 poll 函数,这两个函数也会使进程阻塞,但是和阻塞 I/O 所不同的的,这两个函数可以同时阻塞多个 I/O 操作。而且可以同时对多个读操作,多个写操作的 I/O 函数进行检测,直到有数据可读或可写时,才真正调用 I/O 操作函数。
从流程上来看,使用 select 函数进行 I/O 请求和同步阻塞模型没有太大的区别,甚至还多了添加监视 socket,以及调用 select 函数的额外操作,效率更差。但是,使用 select 以后最大的优势是用户可以在一个线程内同时处理多个 socket 的 I/O 请求。用户可以注册多个 socket,然后不断地调用 select 读取被激活的 socket,即可达到在同一个线程内同时处理多个 I/O 请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。
I/O 多路复用模型使用了 Reactor 设计模式实现了这一机制。
调用 select / poll 该方法由一个用户态线程负责轮询多个 socket,直到某个阶段1的数据就绪,再通知实际的用户线程执行阶段2的拷贝。 通过一个专职的用户态线程执行非阻塞I/O轮询,模拟实现了阶段一的异步化
信号驱动 I/O(SIGIO)
首先我们允许 socket 进行信号驱动 I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个 SIGIO 信号,可以在信号处理函数中调用 I/O 操作函数处理数据。
异步 I/O
调用 aio_read 函数,告诉内核描述字,缓冲区指针,缓冲区大小,文件偏移以及通知的方式,然后立即返回。当内核将数据拷贝到缓冲区后,再通知应用程序。
异步 I/O 模型使用了 Proactor 设计模式实现了这一机制。
告知内核,当整个过程(包括阶段1和阶段2)全部完成时,通知应用程序来读数据.
几种 I/O 模型的比较
前四种模型的区别是阶段1不相同,阶段2基本相同,都是将数据从内核拷贝到调用者的缓冲区。而异步 I/O 的两个阶段都不同于前四个模型。
同步 I/O 操作引起请求进程阻塞,直到 I/O 操作完成。异步 I/O 操作不引起请求进程阻塞。
常见 Java I/O 模型
在了解了 UNIX 的 I/O 模型之后,其实 Java 的 I/O 模型也是类似。
“阻塞I/O”模式
在上一节 Socket 章节中的 EchoServer 就是一个简单的阻塞 I/O 例子,服务器启动后,等待客户端连接。在客户端连接服务器后,服务器就阻塞读写取数据流。
EchoServer 代码:
public class EchoServer { public static int DEFAULT_PORT = 7; public static void main(String[] args) throws IOException { int port; try { port = Integer.parseInt(args[0]); } catch (RuntimeException ex) { port = DEFAULT_PORT; } try ( ServerSocket serverSocket = new ServerSocket(port); Socket clientSocket = serverSocket.accept(); PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true); BufferedReader in = new BufferedReader( new InputStreamReader(clientSocket.getInputStream())); ) { String inputLine; while ((inputLine = in.readLine()) != null) { out.println(inputLine); } } catch (IOException e) { System.out.println("Exception caught when trying to listen on port " + port + " or listening for a connection"); System.out.println(e.getMessage()); } } }
改进为“阻塞I/O+多线程”模式
使用多线程来支持多个客户端来访问服务器。
主线程 MultiThreadEchoServer.java
public class MultiThreadEchoServer { public static int DEFAULT_PORT = 7; public static void main(String[] args) throws IOException { int port; try { port = Integer.parseInt(args[0]); } catch (RuntimeException ex) { port = DEFAULT_PORT; } Socket clientSocket = null; try (ServerSocket serverSocket = new ServerSocket(port);) { while (true) { clientSocket = serverSocket.accept(); // MultiThread new Thread(new EchoServerHandler(clientSocket)).start(); } } catch (IOException e) { System.out.println( "Exception caught when trying to listen on port " + port + " or listening for a connection"); System.out.println(e.getMessage()); } } }
处理器类 EchoServerHandler.java
public class EchoServerHandler implements Runnable { private Socket clientSocket; public EchoServerHandler(Socket clientSocket) { this.clientSocket = clientSocket; } @Override public void run() { try (PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true); BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));) { String inputLine; while ((inputLine = in.readLine()) != null) { out.println(inputLine); } } catch (IOException e) { System.out.println(e.getMessage()); } } }
存在问题:每次接收到新的连接都要新建一个线程,处理完成后销毁线程,代价大。当有大量地短连接出现时,性能比较低。
改进为“阻塞I/O+线程池”模式
针对上面多线程的模型中,出现的线程重复创建、销毁带来的开销,可以采用线程池来优化。每次接收到新连接后从池中取一个空闲线程进行处理,处理完成后再放回池中,重用线程避免了频率地创建和销毁线程带来的开销。
主线程 ThreadPoolEchoServer.java
public class ThreadPoolEchoServer { public static int DEFAULT_PORT = 7; public static void main(String[] args) throws IOException { int port; try { port = Integer.parseInt(args[0]); } catch (RuntimeException ex) { port = DEFAULT_PORT; } ExecutorService threadPool = Executors.newFixedThreadPool(5); Socket clientSocket = null; try (ServerSocket serverSocket = new ServerSocket(port);) { while (true) { clientSocket = serverSocket.accept(); // Thread Pool threadPool.submit(new Thread(new EchoServerHandler(clientSocket))); } } catch (IOException e) { System.out.println( "Exception caught when trying to listen on port " + port + " or listening for a connection"); System.out.println(e.getMessage()); } } }
存在问题:在大量短连接的场景中性能会有提升,因为不用每次都创建和销毁线程,而是重用连接池中的线程。但在大量长连接的场景中,因为线程被连接长期占用,不需要频繁地创建和销毁线程,因而没有什么优势。
虽然这种方法可以适用于小到中度规模的客户端的并发数,如果连接数超过 100,000或更多,那么性能将很不理想。
改进为“非阻塞I/O”模式
“阻塞I/O+线程池”网络模型虽然比”阻塞I/O+多线程”网络模型在性能方面有提升,但这两种模型都存在一个共同的问题:读和写操作都是同步阻塞的,面对大并发(持续大量连接同时请求)的场景,需要消耗大量的线程来维持连接。CPU 在大量的线程之间频繁切换,性能损耗很大。一旦单机的连接超过1万,甚至达到几万的时候,服务器的性能会急剧下降。
而 NIO 的 Selector 却很好地解决了这个问题,用主线程(一个线程或者是 CPU 个数的线程)保持住所有的连接,管理和读取客户端连接的数据,将读取的数据交给后面的线程池处理,线程池处理完业务逻辑后,将结果交给主线程发送响应给客户端,少量的线程就可以处理大量连接的请求。
Java NIO 由以下几个核心部分组成:
要使用 Selector,得向 Selector 注册 Channel,然后调用它的 select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新连接进来,数据接收等。
主线程 NonBlokingEchoServer.java
public class NonBlokingEchoServer { public static int DEFAULT_PORT = 7; public static void main(String[] args) throws IOException { int port; try { port = Integer.parseInt(args[0]); } catch (RuntimeException ex) { port = DEFAULT_PORT; } System.out.println("Listening for connections on port " + port); ServerSocketChannel serverChannel; Selector selector; try { serverChannel = ServerSocketChannel.open(); InetSocketAddress address = new InetSocketAddress(port); serverChannel.bind(address); serverChannel.configureBlocking(false); selector = Selector.open(); serverChannel.register(selector, SelectionKey.OP_ACCEPT); } catch (IOException ex) { ex.printStackTrace(); return; } while (true) { try { selector.select(); } catch (IOException ex) { ex.printStackTrace(); break; } Set<SelectionKey> readyKeys = selector.selectedKeys(); Iterator<SelectionKey> iterator = readyKeys.iterator(); while (iterator.hasNext()) { SelectionKey key = iterator.next(); iterator.remove(); try { if (key.isAcceptable()) { ServerSocketChannel server = (ServerSocketChannel) key.channel(); SocketChannel client = server.accept(); System.out.println("Accepted connection from " + client); client.configureBlocking(false); SelectionKey clientKey = client.register(selector, SelectionKey.OP_WRITE | SelectionKey.OP_READ); ByteBuffer buffer = ByteBuffer.allocate(100); clientKey.attach(buffer); } if (key.isReadable()) { SocketChannel client = (SocketChannel) key.channel(); ByteBuffer output = (ByteBuffer) key.attachment(); client.read(output); } if (key.isWritable()) { SocketChannel client = (SocketChannel) key.channel(); ByteBuffer output = (ByteBuffer) key.attachment(); output.flip(); client.write(output); output.compact(); } } catch (IOException ex) { key.cancel(); try { key.channel().close(); } catch (IOException cex) { } } } } } }
改进为“异步I/O”模式
Java SE 7 版本之后,引入了异步 I/O (NIO.2) 的支持,为构建高性能的网络应用提供了一个利器。
主线程 AsyncEchoServer.java
public class AsyncEchoServer { public static int DEFAULT_PORT = 7; public static void main(String[] args) throws IOException { int port; try { port = Integer.parseInt(args[0]); } catch (RuntimeException ex) { port = DEFAULT_PORT; } ExecutorService taskExecutor = Executors.newCachedThreadPool(Executors.defaultThreadFactory()); // create asynchronous server socket channel bound to the default group try (AsynchronousServerSocketChannel asynchronousServerSocketChannel = AsynchronousServerSocketChannel.open()) { if (asynchronousServerSocketChannel.isOpen()) { // set some options asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 4 * 1024); asynchronousServerSocketChannel.setOption(StandardSocketOptions.SO_REUSEADDR, true); // bind the server socket channel to local address asynchronousServerSocketChannel.bind(new InetSocketAddress(port)); // display a waiting message while ... waiting clients System.out.println("Waiting for connections ..."); while (true) { Future<AsynchronousSocketChannel> asynchronousSocketChannelFuture = asynchronousServerSocketChannel .accept(); try { final AsynchronousSocketChannel asynchronousSocketChannel = asynchronousSocketChannelFuture .get(); Callable<String> worker = new Callable<String>() { @Override public String call() throws Exception { String host = asynchronousSocketChannel.getRemoteAddress().toString(); System.out.println("Incoming connection from: " + host); final ByteBuffer buffer = ByteBuffer.allocateDirect(1024); // transmitting data while (asynchronousSocketChannel.read(buffer).get() != -1) { buffer.flip(); asynchronousSocketChannel.write(buffer).get(); if (buffer.hasRemaining()) { buffer.compact(); } else { buffer.clear(); } } asynchronousSocketChannel.close(); System.out.println(host + " was successfully served!"); return host; } }; taskExecutor.submit(worker); } catch (InterruptedException | ExecutionException ex) { System.err.println(ex); System.err.println("\n Server is shutting down ..."); // this will make the executor accept no new threads // and finish all existing threads in the queue taskExecutor.shutdown(); // wait until all threads are finished while (!taskExecutor.isTerminated()) { } break; } } } else { System.out.println("The asynchronous server-socket channel cannot be opened!"); } } catch (IOException ex) { System.err.println(ex); } } }
本章例子的源码,可以在 https://github.com/waylau/essential-java 中 com.waylau.essentialjava.net.echo 包下找到。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
什么是同步?什么是异步?阻塞和非阻塞又有什么区别?本文先从 Unix 的 I/O 模型讲起,介绍了5种常见的 I/O 模型。而后再引出 Java 的 I/O 模型的演进过程,并用实例说明如何选择合适的 Java I/O 模型来提高系统的并发量和可用性。 由于,Java 的 I/O 依赖于操作系统的实现,所以先了解 Unix 的 I/O 模型有助于理解 Java 的 I/O。 相关概念 同步和异步
本站有一篇文章nginx之gzip压缩提升网站性能(三)介绍过nginx中ngx_http_gzip_module这个模块的使用,这个模块主要是用来压缩静态资源或者任何响应内容的。而这篇文章主要介绍的是ngx_http_gzip_static_module这个模块的使用。 它是这样使用的: location ~ ^/assets/ { gzip_static on; } assets目录下有
信息流报告
绝大部分的嵌入式系统都包括一些 I/O(Input/Output,输入 / 输出)设备,例如仪器上的数据显示屏、工业设备上的串口通信、数据采集设备上用于保存数据的 Flash 或 SD 卡,以及网络设备的以太网接口等,都是嵌入式系统中容易找到的 I/O 设备例子。 本章主要介绍 RT-Thread 如何对不同的 I/O 设备进行管理,读完本章,我们会了解 RT-Thread 的 I/O 设备模型,
主要函数 函数 描述 [[epoll_create epoll_create]] 创建一个epoll的文件描述符 [[epoll_ctl epoll_ctl]] epoll的事件注册函数 [[epoll_wait epoll_wait]] 收集在epoll监控的事件中已经发送的事件 结构体 epoll_event typedef union epoll_data { void *ptr;
什么是 PWA PWA (Progressive Web Apps) 是一种 Web App 新模型,并不是具体指某一种前沿的技术或者某一个单一的知识点,我们从英文缩写来看就能看出来,这是一个渐进式的 Web App,是通过一系列新的 Web 特性,配合优秀的 UI 交互设计,逐步的增强 Web App 的用户体验。 用户的手机现在几乎被各种大大小小形形色色的 App 给攻占了,手机的容量是有上限