一个优秀的Java程序员必须了解GC的工作原理、如何优化GC的性能、如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统、实时系统等,只有全面提升内存的管理效率 ,才能提高整个应用程序的性能。本篇文章首先简单介绍GC的工作原理之后,然后再对GC的几个关键问题进行深入探讨,最后提出一些Java程序设计建议,从GC角度提高Java程序的性能。
GC的基本原理
Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放。
对于程序员来说,分配对象使用new关键字;释放对象时,只要将对象所有引用赋值为null,让程序不能够再访问到这个对象,我们称该对象为\"不可达的\".GC将负责回收所有\"不可达\"对象的内存空间。
对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象(详见 参考资料1 )。通过这种方式确定哪些对象是\"可达的\",哪些对象是\"不可达的\".当GC确定一些对象为\"不可达\"时,GC就有责任回收这些内存空间。但是,为了保证GC能够在不同平台实现的问题,Java规范对GC的很多行为都没有进行严格的规定。例如,对于采用什么类型的回收算法、什么时候进行回收等重要问题都没有明确的规定。因此,不同的JVM的实现者往往有不同的实现算法。这也给Java程序员的开发带来行多不确定性。本文研究了几个与GC工作相关的问题,努力减少这种不确定性给Java程序带来的负面影响。
增量式GC( Incremental GC )
GC在JVM中通常是由一个或一组进程来实现的,它本身也和用户程序一样占用heap空间,运行时也占用CPU.当GC进程运行时,应用程序停止运行。因此,当GC运行时间较长时,用户能够感到Java程序的停顿,另外一方面,如果GC运行时间太短,则可能对象回收率太低,这意味着还有很多应该回收的对象没有被回收,仍然占用大量内存。因此,在设计GC的时候,就必须在停顿时间和回收率之间进行权衡。一个好的GC实现允许用户定义自己所需要的设置,例如有些内存有限有设备,对内存的使用量非常敏感,希望GC能够准确的回收内存,它并不在意程序速度的放慢。另外一些实时网络游戏,就不能够允许程序有长时间的中断。增量式GC就是通过一定的回收算法,把一个长时间的中断,划分为很多个小的中断,通过这种方式减少GC对用户程序的影响。虽然,增量式GC在整体性能上可能不如普通GC的效率高,但是它能够减少程序的最长停顿时间。
Sun JDK提供的HotSpot JVM就能支持增量式GC.HotSpot JVM缺省GC方式为不使用增量GC,为了启动增量GC,我们必须在运行Java程序时增加-Xincgc的参数。HotSpot JVM增量式GC的实现是采用Train GC算法。它的基本想法就是,将堆中的所有对象按照创建和使用情况进行分组(分层),将使用频繁高和具有相关性的对象放在一队中,随着程序的运行,不断对组进行调整。当GC运行时,它总是先回收最老的(最近很少访问的)的对象,如果整组都为可回收对象,GC将整组回收。这样,每次GC运行只回收一定比例的不可达对象,保证程序的顺畅运行。
详解finalize函数
finalize是位于Object类的一个方法,该方法的访问修饰符为protected,由于所有类为Object的子类,因此用户类很容易访问到这个方法。由于,finalize函数没有自动实现链式调用,我们必须手动的实现,因此finalize函数的最后一个语句通常是super.finalize()。通过这种方式,我们可以实现从下到上实现finalize的调用,即先释放自己的资源,然后再释放父类的资源。
根据Java语言规范,JVM保证调用finalize函数之前,这个对象是不可达的,但是JVM不保证这个函数一定会被调用。另外,规范还保证finalize函数最多运行一次。
很多Java初学者会认为这个方法类似与C++中的析构函数,将很多对象、资源的释放都放在这一函数里面。其实,这不是一种很好的方式。原因有三,其一,GC为了能够支持finalize函数,要对覆盖这个函数的对象作很多附加的工作。其二,在finalize运行完成之后,该对象可能变成可达的,GC还要再检查一次该对象是否是可达的。因此,使用finalize会降低GC的运行性能。其三,由于GC调用finalize的时间是不确定的,因此通过这种方式释放资源也是不确定的。
通常,finalize用于一些不容易控制、并且非常重要资源的释放,例如一些I/O的操作,数据的连接。这些资源的释放对整个应用程序是非常关键的。在这种情况下,程序员应该以通过程序本身管理(包括释放)这些资源为主,以finalize函数释放资源方式为辅,形成一种双保险的管理机制,而不应该仅仅依靠finalize来释放资源。
下面给出一个例子说明,finalize函数被调用以后,仍然可能是可达的,同时也可说明一个对象的finalize只可能运行一次。
class MyObject{ Test main; //记录Test对象,在finalize中时用于恢复可达性 public MyObject(Test t) { main=t; //保存Test 对象 } protected void finalize() { main.ref=this;// 恢复本对象,让本对象可达 System.out.println(\"This is finalize\");//用于测试finalize只运行一次 } } class Test { MyObject ref; public static void main(String[] args) { Test test=new Test(); test.ref=new MyObject(test); test.ref=null; //MyObject对象为不可达对象,finalize将被调用 System.gc(); if (test.ref!=null) System.out.println(\"My Object还活着\"); } }
运行结果:
This is finalize
MyObject还活着
此例子中,需要注意的是虽然MyObject对象在finalize中变成可达对象,但是下次回收时候,finalize却不再被调用,因为finalize函数最多只调用一次。
程序如何与GC进行交互
Java2增强了内存管理功能, 增加了一个java.lang.ref包,其中定义了三种引用类。这三种引用类分别为SoftReference、WeakReference和PhantomReference.通过使用这些引用类,程序员可以在一定程度与GC进行交互,以便改善GC的工作效率。这些引用类的引用强度介于可达对象和不可达对象之间。
创建一个引用对象也非常容易,例如如果你需要创建一个Soft Reference对象,那么首先创建一个对象,并采用普通引用方式(可达对象);然后再创建一个SoftReference引用该对象;最后将普通引用设置为null.通过这种方式,这个对象就只有一个Soft Reference引用。同时,我们称这个对象为Soft Reference 对象。
Soft Reference的主要特点是据有较强的引用功能。只有当内存不够的时候,才进行回收这类内存,因此在内存足够的时候,它们通常不被回收。另外,这些引用对象还能保证在Java抛出OutOfMemory 异常之前,被设置为null.它可以用于实现一些常用图片的缓存,实现Cache的功能,保证最大限度的使用内存而不引起OutOfMemory.以下给出这种引用类型的使用伪代码;
//申请一个图像对象 Image image=new Image();//创建Image对象 … //使用 image … //使用完了image,将它设置为soft 引用类型,并且释放强引用; SoftReference sr=new SoftReference(image); image=null; … //下次使用时 if (sr!=null) image=sr.get(); else{ //由于GC由于低内存,已释放image,因此需要重新装载; image=new Image(); sr=new SoftReference(image); }
Weak引用对象与Soft引用对象的最大不同就在于:GC在进行回收时,需要通过算法检查是否回收Soft引用对象,而对于Weak引用对象,GC总是进行回收。Weak引用对象更容易、更快被GC回收。虽然,GC在运行时一定回收Weak对象,但是复杂关系的Weak对象群常常需要好几次GC的运行才能完成。Weak引用对象常常用于Map结构中,引用数据量较大的对象,一旦该对象的强引用为null时,GC能够快速地回收该对象空间。
Phantom引用的用途较少,主要用于辅助finalize函数的使用。Phantom对象指一些对象,它们执行完了finalize函数,并为不可达对象,但是它们还没有被GC回收。这种对象可以辅助finalize进行一些后期的回收工作,我们通过覆盖Reference的clear()方法,增强资源回收机制的灵活性。
一些Java编码的建议
根据GC的工作原理,我们可以通过一些技巧和方式,让GC运行更加有效率,更加符合应用程序的要求。以下就是一些程序设计的几点建议。
1.最基本的建议就是尽早释放无用对象的引用。大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域(scope)后,自动设置为null.我们在使用这种方式时候,必须特别注意一些复杂的对象图,例如数组,队列,树,图等,这些对象之间有相互引用关系较为复杂。对于这类对象,GC回收它们一般效率较低。如果程序允许,尽早将不用的引用对象赋为null.这样可以加速GC的工作。 [Page]
2.尽量少用finalize函数。finalize函数是Java提供给程序员一个释放对象或资源的机会。但是,它会加大GC的工作量,因此尽量少采用finalize方式回收资源。
3.如果需要使用经常使用的图片,可以使用soft应用类型。它可以尽可能将图片保存在内存中,供程序调用,而不引起OutOfMemory.
4.注意集合数据类型,包括数组,树,图,链表等数据结构,这些数据结构对GC来说,回收更为复杂。另外,注意一些全局的变量,以及一些静态变量。这些变量往往容易引起悬挂对象(dangling reference),造成内存浪费。
5.当程序有一定的等待时间,程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。使用增量式GC可以缩短Java程序的暂停时间。
问题内容: 谁能 建议一本书 (或任何其他来源)来彻底揭示 JVM内存管理和垃圾回收的内部知识 (优化,工作,循环引用,特殊性,各种JVM隐喻的讨论…)? [到目前为止,我发现的是单独的文章,涉及各个方面,但没有重量级的书:)。这里是一些用于实施Hotspot的好材料。] 非常感谢您提供的任何建议。 问题答案: 如果您寻找与 供应商无关的 资源来揭示和彻底描述所有已研究/设计的各种GC算法,我建议
本文向大家介绍JavaScript的垃圾回收机制与内存管理,包括了JavaScript的垃圾回收机制与内存管理的使用技巧和注意事项,需要的朋友参考一下 如果我们想要优化性能,首先我们必须得了解JavaScript中的垃圾回收机制,这样可以将很多没有被使用到的变量从内存中清除掉,腾出更多的内存空间,给别的变量分配内存空间。 JavaScript中的垃圾回收机制 引言 本篇文章将讲解一下javascr
Tracing References # gc_get_referents.py import gc import pprint class Graph: def __init__(self, name): self.name = name self.next = None def set_next(self, next):
1.1 程序计数器 JVM 支持多线程同时执行,每个线程都有自己的程序计数器,线程正在执行 Java 代码,则存放正在执行的指令地址,如果正在执行 C 代码(本地方法),则为空。 1.2 虚拟机栈 线程私有,每个方法创建一个栈帧,用于存储局部变量表(this、参数列表、局部变量)、操作数栈(将下一个指令入栈,执行时出栈)、动态链接、方法出口等信息。方法从调用到执行完成对应栈帧的入栈到出栈,线程内串
整个教程中已经不时的出现一些内存管理和垃圾回收的相关知识。这里进行一个小小的总结。 Java是在JVM所虚拟出的内存环境中运行的。内存分为栈(stack)和堆(heap)两部分。我们将分别考察这两个区域。 栈 栈的基本概念参考纸上谈兵: 栈 (stack)。许多语言利用栈数据结构来记录函数调用的次序和相关变量(参考Linux从程序到进程)。 在Java中,JVM中的栈记录了线程的方法调用。每个线程
问题内容: 我正在读取一个很大的文件,并从每一行中提取文本的一小部分。但是,在操作结束时,我的工作记忆很少。似乎垃圾收集器在读取文件后无法释放内存。 我的问题是:有什么办法释放这种记忆?还是这是JVM错误? 我创建了一个SSCCE来演示这一点。它读取一个1 mb(由于16位编码,在Java中为2 mb)的文件,并从每行中提取一个字符(约4000行,因此大约为8 kb)。测试结束时,仍将使用全部2