字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在。比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样做不但麻烦,而且代码难以复用。
正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。
所以我们判断一个字符串是否是合法的Email的方法是:
因为正则表达式也是用字符串表示的,所以,我们要首先了解如何用字符来描述字符。
在正则表达式中,如果直接给出字符,就是精确匹配。用\d可以匹配一个数字,\w可以匹配一个字母或数字,所以:
.可以匹配任意字符,所以:
'py.'可以匹配'pyc'、'pyo'、'py!'等等。
要匹配变长的字符,在正则表达式中,用*表示任意个字符(包括0个),用+表示至少一个字符,用?表示0个或1个字符,用{n}表示n个字符,用{n,m}表示n-m个字符:
来看一个复杂的例子:\d{3}\s+\d{3,8}。
我们来从左到右解读一下:
综合起来,上面的正则表达式可以匹配以任意个空格隔开的带区号的电话号码。
如果要匹配'010-12345'这样的号码呢?由于'-'是特殊字符,在正则表达式中,要用'\'转义,所以,上面的正则是\d{3}\-\d{3,8}。
但是,仍然无法匹配'010 - 12345',因为带有空格。所以我们需要更复杂的匹配方式。
进阶
要做更精确地匹配,可以用[]表示范围,比如:
A|B可以匹配A或B,所以[P|p]ython可以匹配'Python'或者'python'。
^表示行的开头,^\d表示必须以数字开头。
$表示行的结束,\d$表示必须以数字结束。
你可能注意到了,py也可以匹配'python',但是加上^py$就变成了整行匹配,就只能匹配'py'了。
re模块
有了准备知识,我们就可以在Python中使用正则表达式了。Python提供re模块,包含所有正则表达式的功能。由于Python的字符串本身也用\转义,所以要特别注意:
s = 'ABC\\-001' # Python的字符串 # 对应的正则表达式字符串变成: # 'ABC\-001'
因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了:
s = r'ABC\-001' # Python的字符串 # 对应的正则表达式字符串不变: # 'ABC\-001'
先看看如何判断正则表达式是否匹配:
>>> import re >>> re.match(r'^\d{3}\-\d{3,8}$', '010-12345') <_sre.SRE_Match object at 0x1026e18b8> >>> re.match(r'^\d{3}\-\d{3,8}$', '010 12345') >>>
match()方法判断是否匹配,如果匹配成功,返回一个Match对象,否则返回None。常见的判断方法就是:
test = '用户输入的字符串' if re.match(r'正则表达式', test): print 'ok' else: print 'failed'
切分字符串
用正则表达式切分字符串比用固定的字符更灵活,请看正常的切分代码:
>>> 'a b c'.split(' ') ['a', 'b', '', '', 'c']
嗯,无法识别连续的空格,用正则表达式试试:
>>> re.split(r'\s+', 'a b c') ['a', 'b', 'c']
无论多少个空格都可以正常分割。加入,试试:
>>> re.split(r'[\s\,]+', 'a,b, c d') ['a', 'b', 'c', 'd']
再加入;试试:
>>> re.split(r'[\s\,\;]+', 'a,b;; c d') ['a', 'b', 'c', 'd']
如果用户输入了一组标签,下次记得用正则表达式来把不规范的输入转化成正确的数组。
分组
除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。比如:
^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码:
>>> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345') >>> m <_sre.SRE_Match object at 0x1026fb3e8> >>> m.group(0) '010-12345' >>> m.group(1) '010' >>> m.group(2) '12345'
如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。
注意到group(0)永远是原始字符串,group(1)、group(2)……表示第1、2、……个子串。
提取子串非常有用。来看一个更凶残的例子:
>>> t = '19:05:30' >>> m = re.match(r'^(0[0-9]|1[0-9]|2[0-3]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])$', t) >>> m.groups() ('19', '05', '30')
这个正则表达式可以直接识别合法的时间。但是有些时候,用正则表达式也无法做到完全验证,比如识别日期:
'^(0[1-9]|1[0-2]|[0-9])-(0[1-9]|1[0-9]|2[0-9]|3[0-1]|[0-9])$'
对于'2-30','4-31'这样的非法日期,用正则还是识别不了,或者说写出来非常困难,这时就需要程序配合识别了。
贪婪匹配
最后需要特别指出的是,正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0:
>>> re.match(r'^(\d+)(0*)$', '102300').groups() ('102300', '')
由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。
必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个?就可以让\d+采用非贪婪匹配:
>>> re.match(r'^(\d+?)(0*)$', '102300').groups() ('1023', '00')
编译
当我们在Python中使用正则表达式时,re模块内部会干两件事情:
如果一个正则表达式要重复使用几千次,出于效率的考虑,我们可以预编译该正则表达式,接下来重复使用时就不需要编译这个步骤了,直接匹配:
>>> import re # 编译: >>> re_telephone = re.compile(r'^(\d{3})-(\d{3,8})$') # 使用: >>> re_telephone.match('010-12345').groups() ('010', '12345') >>> re_telephone.match('010-8086').groups() ('010', '8086')
编译后生成Regular Expression对象,由于该对象自己包含了正则表达式,所以调用对应的方法时不用给出正则字符串。
小结
正则表达式非常强大,要在短短的一节里讲完是不可能的。要讲清楚正则的所有内容,可以写一本厚厚的书了。如果你经常遇到正则表达式的问题,你可能需要一本正则表达式的参考书。
请尝试写一个验证Email地址的正则表达式。版本一应该可以验证出类似的Email:
someone@gmail.com bill.gates@microsoft.com Try
版本二可以验证并提取出带名字的Email地址:
<Tom Paris> tom@voyager.org
序:世界上信息非常多,而我们关注的信息有限。假如我们希望只提取出关注的数据,此时可以通过一些表达式进行提取,正则表达式就是其中一种进行数据筛选的表达式。 正则表达式(Regular Expression)是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为"元字符")。 正则表达式通常被用来匹配、检索、替换和分割那些符合某个模式(规则)的文本。 Python 自1.5版本起
问题内容: 假设我想要一个正则表达式,使其与“从iPhone发送”和“从iPod发送”都匹配。我该如何写这样的表达? 我尝试过类似的事情: 但似乎不起作用。 问题答案:
问题内容: 我试图在Python 2.7.2中使用正则表达式从字符串中提取所有出现的带标记单词。或者简单地说,我想提取标签内的所有文本。这是我的尝试: 印刷产品 要获取的正确正则表达式是: 或。 谢谢。:) 问题答案: 产量 regex与unicode完全相同,但难于阅读。 第一个括号组告诉重新任何列表中的字符应匹配,并且同样与第二组括号。那你想什么都不要。所以, 卸下外围的方括号。(也除去杂散前
问题内容: 我正在尝试抓取“ ”标记后的所有内容并将其删除,但是我的代码似乎没有执行任何操作。难道不支持正则表达式? 问题答案: 否。Python中的正则表达式由模块处理。 一般来说:
昨天,我需要向正则表达式添加一个文件路径,创建一个如下所示的模式: 一开始正则表达式不匹配,因为包含几个正则表达式特定的符号,如 或 。作为快速修复,我将它们替换为 和 . 与 . 然而,我问自己,是否没有一种更可靠或更好的方法来清除正则表达式特定符号中的字符串。 Python 标准库中是否支持此类功能? 如果没有,您是否知道一个正则表达式来识别所有正则表达式并通过替代品清理它们?