当前位置: 首页 > 编程笔记 >

python语音识别实践之百度语音API

平俊茂
2023-03-14
本文向大家介绍python语音识别实践之百度语音API,包括了python语音识别实践之百度语音API的使用技巧和注意事项,需要的朋友参考一下

百度语音对上传的语音要求目前必须是单声道,16K采样率,采样深度可以是16位或者8位的PCM编码。其他编码输出的语音识别不出来。

语音的处理技巧:

录制为MP3的语音(通常采样率为44100),要分两步才能正确处理。第一步:使用诸如GoldWave的软件,先保存为16K采样率的MP3;第二步,打开16K采样率的MP3,另存为Wav格式,参数选择PCM,单声道即可。

另外,也可以使用ffmpeg将MP3处理为PCM。后文的程序即采用这种方法。

由于PCM编码的语音没有压缩,文件体积与语音长度成正比。百度语音平台对语音的长度的限制未知。文件太大,网速不好的时候,容易出现”连接错误“的提示。因此,对时间较长的语音,应该将语音分割成多个序列,在分别进行识别。(目前按照等长分割)

以下代码,使用前,需要在baidu 开发者上申请相关的API ID, API Key, Secret Key,并以申请的参数代入到文件中。

# 引入Speech SDK
from aip import AipSpeech
import subprocess
import datetime
import sys
import os
import time
from pydub import AudioSegment
import math
 
# 定义常量
#APP_ID = '你的 App ID'
APP_ID = '937****'
#API_KEY = '你的 API Key'
API_KEY = 'mOV9QaabNnkur0Aba15T****'
#SECRET_KEY = '你的 Secret Key'
SECRET_KEY = '097111374ad26d4ba00937c5e332****'
# 初始化AipSpeech对象
aipSpeech = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
 
# 文件处理
def get_wave_filename(fileFullName):
 # MP3文件转换成wav文件
 # 判断文件后缀,是mp3的,直接处理为16k采样率的wav文件;
 # 是wav的,判断文件的采样率,不是8k或者16k的,直接处理为16k的采样率的wav文件
 # 其他情况,就直接返回AudioSegment直接处理
 fileSufix = fileFullName[fileFullName.rfind('.')+1:]
 print(fileSufix)
 filePath = fileFullName[:fileFullName.find(os.sep)+1]
 print(filePath)
 if fileSufix.lower() == "mp3":
 wavFile = "wav_%s.wav" %datetime.datetime.now().strftime('%Y%m%d%H%M%S')
 wavFile = filePath + wavFile
 cmdLine = "ffmpeg -i \"%s\" -ar 16000 " %fileFullName
 cmdLine = cmdLine + "\"%s\"" %wavFile
 print(cmdLine)
 ret = subprocess.run(cmdLine)
 print("ret code:%i" %ret.returncode)
 return wavFile
 #if ret.returncode == 1:
 # return wavFile
 #else:
 # return None
 else:
 return fileFullName
 
 
#文件分片
try:
 script, fileFullName = sys.argv
except:
 print("参数 文件名 未指定!")
 exit()
 
if not os.path.isfile(fileFullName):
 print("参数 %s 不是一个文件名" %fileFullName)
 exit()
 
if not os.path.exists(fileFullName):
 print("参数 %s 指定的文件不存在" %fileFullName)
 exit()
 
filePath = fileFullName[:fileFullName.find(os.sep)+1]
# 文件处理为Wav,采样率16k的文件,返回文件名
wavFile = get_wave_filename(fileFullName)
print(wavFile)
record = AudioSegment.from_wav(wavFile)
if wavFile != fileFullName:
 time.sleep(1)
 os.remove(wavFile)
 
recLen = record.duration_seconds
interval = 120 * 1000
maxLoop = math.ceil(recLen*1000/float(interval))
for n in range(0,math.ceil(recLen*1000/float(interval))):
 recSeg = record[n * interval : (n + 1)*interval]
 #print("Segment:%i,startat:%i,length:%i" %n,n*interval/1000,recSeg.duration_seconds)
 print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + " >> Segment:" + str(n) +"/" + str(maxLoop))
 segFile = filePath + "seg%s.wav" %("0"*7 + str(n))[-6:]
 # 把分段的语音信息保存为临时文件
 file_handle = recSeg.export(segFile,format="wav",codec = "libvorbis")
 file_handle.close()
 # 读取分段的临时文件为字节
 file_handle = open(segFile, 'rb')
 file_content = file_handle.read()
 file_handle.close()
 # 删除临时文件
 os.remove(segFile)
 # 用百度API处理该语音
 result=aipSpeech.asr(file_content, 'pcm', 16000, {'lan': 'zh'})
 if result['err_no'] == 0:
 print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + " >> " + result['result'][0])
 else:
 print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + " >> " + "err_no:" + str(result['err_no']))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 我正在为嵌入式设备的语音相关语音识别解决方案寻找解决方案。我已经研究过Pocketsphinx,但由于我仍然不熟悉它,我想也许更有经验的人可能会知道。是否有可能使用Pocketsphinx来实现这样的语音识别。它应该记录音频,提取其特征,然后将其与所说的任何内容进行匹配,而不是使用声学和语言模型。是否有可能使用Pocketsphinx实现此流程?如果没有,有人能为这样的解决方案指出正确的方向吗?谢

  • 我正在玩Google Cloud Speech API。我想知道我是否使用python语音识别库并调用google cloud语音API,这仍然是使用API的有效方式吗?我只想转录文本。 我对它们之间的区别感到困惑,如果我只想转录音频,是否有任何建议的方法。 使用Python语音识别: 不使用Python SpeechRecognition:

  • 由于连接到不同的API,我目前正在开发一个工具,允许我阅读所有的通知。 它工作得很好,但现在我想用一些声音命令来做一些动作。 就像当软件说“一封来自Bob的邮件”时,我想说“阅读”或“存档”。 我的软件是通过一个节点服务器运行的,目前我没有任何浏览器实现,但它可以是一个计划。 在NodeJS中,启用语音到文本的最佳方式是什么? 我在它上面看到了很多线程,但主要是使用浏览器,如果可能的话,我希望在一

  • 语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产

  • 识别简单的语句。

  • 光环板内置的麦克风和Wi-Fi功能相结合,可以实现语音识别相关的应用。通过接入互联网,可以使用各大主流科技公司提供的语音识别服务,像是微软语音识别服务。使用联网功能需要登陆慧编程账号。 注册/登陆慧编程 点击工具栏右侧的登陆/注册按钮,依据提示登陆/注册账号。 启用上传模式 点击启用上传模式。 新建语音识别项目 我们将新建一个语音识别项目,使用语音来点亮光环板的LED灯。 连接网络 1. 添加事件