本文实例讲述了C++数据结构与算法之反转链表的方法。分享给大家供大家参考,具体如下:
算法概述:要求实现将一条单向链表反转并考虑时间复杂度。
算法分析:
数组法(略):
将列表元素逐个保存进数组,之后再逆向重建列表
点评:实现逻辑最简单,需要额外的内存开销。
移动指针:
通过三个指针逐个从链表头开始逐一反转链表元素的指针
点评:不需要额外的内存开销,会改变原始链表。
递归:
以递归的方式首先找到链表尾部,再逐一反转指针
点评:不需要额外的内存开销,不会改变原始链表。
算法实现:
构建链表结构
/* 节点结构 */ struct NODE { int data; struct NODE* next; }; /* 添加元素-压栈 */ void push(NODE** head, int dat) { struct NODE* new_node = new NODE(); new_node->data = dat; new_node->next = *head; *head = new_node; } /* 添加元素-添加 */ void add(NODE** head, int dat) { struct NODE* new_node = new NODE(); new_node->data = dat; new_node->next = NULL; if (*head != NULL) { struct NODE* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = new_node; } else { *head = new_node; } }
移动指针
/* 反转列表 */ void reverse(NODE** head) { struct NODE* pre = NULL; struct NODE* cur = *head; struct NODE* nxt; while (cur != NULL) { // 反转指针 nxt = cur->next; cur->next = pre; // 移动指针 pre = cur; cur = nxt; } *head = pre; }
递归
/* 反转列表-复制原表返回反转表 */ NODE* reverse(NODE* head) { if (head == NULL || head->next == NULL) { return head; } NODE* new_head = reverse(head->next); // 反转指针 head->next->next = head; head->next = NULL; return new_head; }
打印链表
/* 打印队列 */ void print(NODE* head) { NODE* temp = head; while (temp != NULL) { std::cout << temp->data << std::endl; temp = temp->next; } }
完整代码如下:
#include <iostream> /* 节点结构 */ struct NODE { int data; struct NODE* next; }; /* 添加元素-压栈 */ void push(NODE** head, int dat) { struct NODE* new_node = new NODE(); new_node->data = dat; new_node->next = *head; *head = new_node; } /* 添加元素-添加 */ void add(NODE** head, int dat) { struct NODE* new_node = new NODE(); new_node->data = dat; new_node->next = NULL; if (*head != NULL) { struct NODE* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = new_node; } else { *head = new_node; } } /* 反转列表 */ void reverse(NODE** head) { struct NODE* pre = NULL; struct NODE* cur = *head; struct NODE* nxt; while (cur != NULL) { // 反转指针 nxt = cur->next; cur->next = pre; // 移动指针 pre = cur; cur = nxt; } *head = pre; } /* 反转列表-复制原表返回反转表 */ NODE* reverse(NODE* head) { if (head == NULL || head->next == NULL) { return head; } NODE* new_head = reverse(head->next); // 反转指针 head->next->next = head; head->next = NULL; return new_head; } /* 打印队列 */ void print(NODE* head) { NODE* temp = head; while (temp != NULL) { std::cout << temp->data << std::endl; temp = temp->next; } } int main() { struct NODE* n = NULL; add(&n, 1); add(&n, 2); add(&n, 3); n = reverse(n); print(n); return 0; }
希望本文所述对大家C++程序设计有所帮助。
本文向大家介绍Python实现的数据结构与算法之链表详解,包括了Python实现的数据结构与算法之链表详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python实现的数据结构与算法之链表。分享给大家供大家参考。具体分析如下: 一、概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接。 根据结构的不同,链表可以分
单链表 单链表就地翻转 递归算法: void reverse(struct list_node *head) { if(NULL == head || NULL == head->next) return; reverse1(head->next); head->next->next = head; head->next = NULL; } 非递归算
链表的概念 逻辑结构上一个挨一个的数据,在实际存储时,并没有像顺序表(数组)那样也相互紧挨着。恰恰相反,数据随机分布在内存中的各个位置,这种存储结构称为线性表的链式存储。 每个元素本身由两部分组成: 本身的信息,称为 数据域 指向直接后继的指针,称为 指针域 内存分布 数据是连续存储的,一个挨着一个,连续的。链表是存储单元不一定是连续的, 主要分类 单向链表 循环链表 双向链表 双向循环链表 单向
本文向大家介绍Javascript数据结构与算法之列表详解,包括了Javascript数据结构与算法之列表详解的使用技巧和注意事项,需要的朋友参考一下 前言:在日常生活中,人们经常要使用列表,比如我们有时候要去购物时,为了购物时东西要买全,我们可以在去之前,列下要买的东西,这就要用的列表了,或者我们小时候上学那段时间,每次考完试后,学校都会列出这次考试成绩前十名的同学的排名及成绩单,等等这些都是列
本文向大家介绍JavaScript数据结构与算法之栈详解,包括了JavaScript数据结构与算法之栈详解的使用技巧和注意事项,需要的朋友参考一下 在上一篇博客介绍了下列表,列表是最简单的一种结构,但是如果要处理一些比较复杂的结构,列表显得太简陋了,所以我们需要某种和列表类似但是更复杂的数据结构---栈。栈是一种高效的数据结构,因为数据只能在栈顶添加或删除,所以这样操作很快,而且容易实现。 一:对
本文向大家介绍C++数据结构与算法之双缓存队列实现方法详解,包括了C++数据结构与算法之双缓存队列实现方法详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了C++数据结构与算法之双缓存队列实现方法。分享给大家供大家参考,具体如下: “双缓存队列”是我在一次开发任务中针对特殊场景设计出来的结构。使用场景为:发送端持续向接收端发送数据包——并且不理会接收端是否完成业务逻辑。由于接收端在任何情