原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的“fake”数据,目的是网络生成的fake数据可以“骗过”判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据。总的来说是:判别器区分真实数据和fake数据的能力越强越好;生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能交替训练网络。
需要搭建生成器网络和判别器网络,训练的时候交替训练。
首先训练判别器的参数,固定生成器的参数,让判别器判断生成器生成的数据,让其和0接近,让判别器判断真实数据,让其和1接近;
接着训练生成器的参数,固定判别器的参数,让生成器生成的数据进入判别器,让判断结果和1接近。生成器生成数据需要给定随机初始值
线性版:
import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import optim import torch.nn as nn import matplotlib.pyplot as plt import numpy as np import matplotlib.gridspec as gridspec def showimg(images,count): images=images.detach().numpy()[0:16,:] images=255*(0.5*images+0.5) images = images.astype(np.uint8) grid_length=int(np.ceil(np.sqrt(images.shape[0]))) plt.figure(figsize=(4,4)) width = int(np.sqrt((images.shape[1]))) gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0) # gs.update(wspace=0, hspace=0) print('starting...') for i, img in enumerate(images): ax = plt.subplot(gs[i]) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape([width,width]),cmap = plt.cm.gray) plt.axis('off') plt.tight_layout() print('showing...') plt.tight_layout() plt.savefig('./GAN_Image/%d.png'%count, bbox_inches='tight') def loadMNIST(batch_size): #MNIST图片的大小是28*28 trans_img=transforms.Compose([transforms.ToTensor()]) trainset=MNIST('./data',train=True,transform=trans_img,download=True) testset=MNIST('./data',train=False,transform=trans_img,download=True) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10) testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10) return trainset,testset,trainloader,testloader class discriminator(nn.Module): def __init__(self): super(discriminator,self).__init__() self.dis=nn.Sequential( nn.Linear(784,300), nn.LeakyReLU(0.2), nn.Linear(300,150), nn.LeakyReLU(0.2), nn.Linear(150,1), nn.Sigmoid() ) def forward(self, x): x=self.dis(x) return x class generator(nn.Module): def __init__(self,input_size): super(generator,self).__init__() self.gen=nn.Sequential( nn.Linear(input_size,150), nn.ReLU(True), nn.Linear(150,300), nn.ReLU(True), nn.Linear(300,784), nn.Tanh() ) def forward(self, x): x=self.gen(x) return x if __name__=="__main__": criterion=nn.BCELoss() num_img=100 z_dimension=100 D=discriminator() G=generator(z_dimension) trainset, testset, trainloader, testloader = loadMNIST(num_img) # data d_optimizer=optim.Adam(D.parameters(),lr=0.0003) g_optimizer=optim.Adam(G.parameters(),lr=0.0003) ''' 交替训练的方式训练网络 先训练判别器网络D再训练生成器网络G 不同网络的训练次数是超参数 也可以两个网络训练相同的次数 这样就可以不用分别训练两个网络 ''' count=0 #鉴别器D的训练,固定G的参数 epoch = 100 gepoch = 1 for i in range(epoch): for (img, label) in trainloader: # num_img=img.size()[0] real_img=img.view(num_img,-1)#展开为28*28=784 real_label=torch.ones(num_img)#真实label为1 fake_label=torch.zeros(num_img)#假的label为0 #compute loss of real_img real_out=D(real_img) #真实图片送入判别器D输出0~1 d_loss_real=criterion(real_out,real_label)#得到loss real_scores=real_out#真实图片放入判别器输出越接近1越好 #compute loss of fake_img z=torch.randn(num_img,z_dimension)#随机生成向量 fake_img=G(z)#将向量放入生成网络G生成一张图片 fake_out=D(fake_img)#判别器判断假的图片 d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss fake_scores=fake_out#假的图片放入判别器输出越接近0越好 #D bp and optimize d_loss=d_loss_real+d_loss_fake d_optimizer.zero_grad() #判别器D的梯度归零 d_loss.backward() #反向传播 d_optimizer.step() #更新判别器D参数 #生成器G的训练compute loss of fake_img for j in range(gepoch): fake_label = torch.ones(num_img) # 真实label为1 z = torch.randn(num_img, z_dimension) # 随机生成向量 fake_img = G(z) # 将向量放入生成网络G生成一张图片 output = D(fake_img) # 经过判别器得到结果 g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss #bp and optimize g_optimizer.zero_grad() #生成器G的梯度归零 g_loss.backward() #反向传播 g_optimizer.step()#更新生成器G参数 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ' 'D real: {:.6f}, D fake: {:.6f}'.format( i, epoch, d_loss.data[0], g_loss.data[0], real_scores.data.mean(), fake_scores.data.mean())) showimg(fake_img,count) # plt.show() count += 1
这里的图分别是 epoch为0、50、100、150、190的运行结果,可以看到图片中的数字并不单一
卷积版 Deep Convolutional Generative Adversarial Networks:
import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import optim import torch.nn as nn import matplotlib.pyplot as plt import numpy as np from torch.autograd import Variable import matplotlib.gridspec as gridspec import os def showimg(images,count): images=images.to('cpu') images=images.detach().numpy() images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]] images=255*(0.5*images+0.5) images = images.astype(np.uint8) grid_length=int(np.ceil(np.sqrt(images.shape[0]))) plt.figure(figsize=(4,4)) width = images.shape[2] gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0) print(images.shape) for i, img in enumerate(images): ax = plt.subplot(gs[i]) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape(width,width),cmap = plt.cm.gray) plt.axis('off') plt.tight_layout() # print('showing...') plt.tight_layout() # plt.savefig('./GAN_Imaget/%d.png'%count, bbox_inches='tight') def loadMNIST(batch_size): #MNIST图片的大小是28*28 trans_img=transforms.Compose([transforms.ToTensor()]) trainset=MNIST('./data',train=True,transform=trans_img,download=True) testset=MNIST('./data',train=False,transform=trans_img,download=True) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10) testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10) return trainset,testset,trainloader,testloader class discriminator(nn.Module): def __init__(self): super(discriminator,self).__init__() self.dis=nn.Sequential( nn.Conv2d(1,32,5,stride=1,padding=2), nn.LeakyReLU(0.2,True), nn.MaxPool2d((2,2)), nn.Conv2d(32,64,5,stride=1,padding=2), nn.LeakyReLU(0.2,True), nn.MaxPool2d((2,2)) ) self.fc=nn.Sequential( nn.Linear(7 * 7 * 64, 1024), nn.LeakyReLU(0.2, True), nn.Linear(1024, 1), nn.Sigmoid() ) def forward(self, x): x=self.dis(x) x=x.view(x.size(0),-1) x=self.fc(x) return x class generator(nn.Module): def __init__(self,input_size,num_feature): super(generator,self).__init__() self.fc=nn.Linear(input_size,num_feature) #1*56*56 self.br=nn.Sequential( nn.BatchNorm2d(1), nn.ReLU(True) ) self.gen=nn.Sequential( nn.Conv2d(1,50,3,stride=1,padding=1), nn.BatchNorm2d(50), nn.ReLU(True), nn.Conv2d(50,25,3,stride=1,padding=1), nn.BatchNorm2d(25), nn.ReLU(True), nn.Conv2d(25,1,2,stride=2), nn.Tanh() ) def forward(self, x): x=self.fc(x) x=x.view(x.size(0),1,56,56) x=self.br(x) x=self.gen(x) return x if __name__=="__main__": criterion=nn.BCELoss() num_img=100 z_dimension=100 D=discriminator() G=generator(z_dimension,3136) #1*56*56 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data D=D.cuda() G=G.cuda() d_optimizer=optim.Adam(D.parameters(),lr=0.0003) g_optimizer=optim.Adam(G.parameters(),lr=0.0003) ''' 交替训练的方式训练网络 先训练判别器网络D再训练生成器网络G 不同网络的训练次数是超参数 也可以两个网络训练相同的次数, 这样就可以不用分别训练两个网络 ''' count=0 #鉴别器D的训练,固定G的参数 epoch = 100 gepoch = 1 for i in range(epoch): for (img, label) in trainloader: # num_img=img.size()[0] img=Variable(img).cuda() real_label=Variable(torch.ones(num_img)).cuda()#真实label为1 fake_label=Variable(torch.zeros(num_img)).cuda()#假的label为0 #compute loss of real_img real_out=D(img) #真实图片送入判别器D输出0~1 d_loss_real=criterion(real_out,real_label)#得到loss real_scores=real_out#真实图片放入判别器输出越接近1越好 #compute loss of fake_img z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量 fake_img=G(z)#将向量放入生成网络G生成一张图片 fake_out=D(fake_img)#判别器判断假的图片 d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss fake_scores=fake_out#假的图片放入判别器输出越接近0越好 #D bp and optimize d_loss=d_loss_real+d_loss_fake d_optimizer.zero_grad() #判别器D的梯度归零 d_loss.backward() #反向传播 d_optimizer.step() #更新判别器D参数 #生成器G的训练compute loss of fake_img for j in range(gepoch): fake_label = Variable(torch.ones(num_img)).cuda() # 真实label为1 z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成向量 fake_img = G(z) # 将向量放入生成网络G生成一张图片 output = D(fake_img) # 经过判别器得到结果 g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss #bp and optimize g_optimizer.zero_grad() #生成器G的梯度归零 g_loss.backward() #反向传播 g_optimizer.step()#更新生成器G参数 # if ((i+1)%1000==0): # print("[%d/%d] GLoss: %.5f" % (i + 1, gepoch, g_loss.data[0])) print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ' 'D real: {:.6f}, D fake: {:.6f}'.format( i, epoch, d_loss.data[0], g_loss.data[0], real_scores.data.mean(), fake_scores.data.mean())) showimg(fake_img,count) plt.show() count += 1
这里的gepoch设置为1,运行39次的结果是:
gepoch设置为2,运行0、25、50、75、100次的结果是:
gepoch设置为3,运行25、50、75次的结果是:
gepoch设置为4,运行0、10、20、30、35次的结果是:
gepoch设置为5,运行0、10、20、25、29次的结果是:
gepoch设置为3,z_dimension设置为190,epoch运行0、10、15、20、25、35的结果是:
可以看到生成的数字基本没有太多的规律,可能最终都是同个数字,不能生成指定的数字,CGAN就很好的解决这个问题,可以生成指定的数字 Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式
以上这篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
本文向大家介绍Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,包括了Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式的使用技巧和注意事项,需要的朋友参考一下 CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息。 这里用传统的卷积方式实现CGAN。 和
本文向大家介绍关于Pytorch的MNIST数据集的预处理详解,包括了关于Pytorch的MNIST数据集的预处理详解的使用技巧和注意事项,需要的朋友参考一下 关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等。 操作系统:ubuntu18.04 显卡:GTX1080ti p
本文向大家介绍pytorch实现建立自己的数据集(以mnist为例),包括了pytorch实现建立自己的数据集(以mnist为例)的使用技巧和注意事项,需要的朋友参考一下 本文将原始的numpy array数据在pytorch下封装为Dataset类的数据集,为后续深度网络训练提供数据。 加载并保存图像信息 首先导入需要的库,定义各种路径。 这里将数据集分为三类,baseset为所有数据(trai
我正试图修改这个来自的前馈网络https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/feedforward_neural_network/main.py 使用我自己的数据集。 我定义了一个自定义数据集,其中两个1微米数组作为输入,两个标量对应的输出: 我已更新超参数以匹配新的输入大小(2) 我还改变了t
本文向大家介绍pytorch 把MNIST数据集转换成图片和txt的方法,包括了pytorch 把MNIST数据集转换成图片和txt的方法的使用技巧和注意事项,需要的朋友参考一下 本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下: 1.下载Mnist 数据集 下载下来的其实可以直接用了,但是我们这边想把它们转换成图片和txt,这样好看些,为后面用自己的图片
本文向大家介绍TensorFlow MNIST手写数据集的实现方法,包括了TensorFlow MNIST手写数据集的实现方法的使用技巧和注意事项,需要的朋友参考一下 MNIST数据集介绍 MNIST数据集中包含了各种各样的手写数字图片,数据集的官网是:http://yann.lecun.com/exdb/mnist/index.html,我们可以从这里下载数据集。使用如下的代码对数据集进行加载: