Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,可与Python结合使用,以实现算法,深度学习应用程序等等。它用于研究和生产目的。
可以使用下面的代码行在Windows上安装'tensorflow'软件包-
pip install tensorflow
Tensor是TensorFlow中使用的数据结构。它有助于连接流程图中的边缘。该流程图称为“数据流程图”。张量不过是多维数组或列表。
回归问题背后的目的是预测连续或离散变量的输出,例如价格,概率,是否下雨等等。
我们使用的数据集称为“自动MPG”数据集。它包含了1970年代和1980年代汽车的燃油效率。它包括诸如重量,马力,位移等属性。因此,我们需要预测特定车辆的燃油效率。
我们正在使用Google合作实验室来运行以下代码。Google Colab或Colaboratory可以帮助通过浏览器运行Python代码,并且需要零配置和对GPU(图形处理单元)的免费访问。合作已建立在Jupyter Notebook的基础上。
以下是使用自动MPG数据集预测燃油效率的代码-
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns np.set_printoptions(precision=3, suppress=True) import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing print("The version of tensorflow is ") print(tf.__version__) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] print("The data is being loaded") print("The column names have been defined") raw_dataset = pd.read_csv(url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) dataset = raw_dataset.copy() print("A sample of the dataset") dataset.head(2)
代码信用-https://www.tensorflow.org/tutorials/keras/regression
输出结果
The version of tensorflow is 2.4.0 The data is being loaded The column names have been defined A sample of the dataset
sl。 | 手脉 | 气瓶 | 移位 | 马力 | 重量 | 加速 | 模特年 | 起源 |
---|---|---|---|---|---|---|---|---|
0 | 18.0 | 8 | 307.0 | 130.0 | 3504.0 | 12.0 | 70 | 1 |
1 | 15.0 | 8 | 350.0 | 165.0 | 3693.0 | 11.5 | 70 | 1 |
所需的软件包已导入并使用别名。
数据已加载,并为其定义了列名称。
数据集样本显示在控制台上。
本文向大家介绍如何使用TensorFlow清理数据以预测Auto MPG数据的燃油效率?,包括了如何使用TensorFlow清理数据以预测Auto MPG数据的燃油效率?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等。 可以使用下面的代码行在Windows上安装'te
本文向大家介绍如何使用TensorFlow使用Auto MPG数据集将数据标准化以预测燃油效率?,包括了如何使用TensorFlow使用Auto MPG数据集将数据标准化以预测燃油效率?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等。可以使用下面的代码行在Window
本文向大家介绍Tensorflow如何使用Python预测每个标签上的stackoverflow问题数据集的分数?,包括了Tensorflow如何使用Python预测每个标签上的stackoverflow问题数据集的分数?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等
回归(Regression) 概述 我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。 回归 场景 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。 假如你想要预测兰博基尼跑车的功率大小,可能会这样计算: HorsePower = 0.0015 annualSalary - 0.99 hoursListe
回归(Regression) 概述 我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。 回归 场景 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式。 假如你想要预测兰博基尼跑车的功率大小,可能会这样计算: HorsePower = 0.0015 * annualSalary - 0.99 * hoursL
本文向大家介绍TensorFlow如何用于在Python中对Fashion MNIST数据集进行预测?,包括了TensorFlow如何用于在Python中对Fashion MNIST数据集进行预测?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,可与Python结合使用,以实现算法,深度学习应用程序等等。它用于研究和生产目