前言
数据清洗是一项复杂且繁琐(kubi)的工作,同时也是整个数据分析过程中最为重要的环节。有人说一个分析项目80%的时间都是在清洗数据,这听起来有些匪夷所思,但在实际的工作中确实如此。数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。换句话说就是有”脏”数据要洗,干净的数据也要洗。
在数据分析中,特别是文本分析中,字符处理需要耗费极大的精力,因而了解字符处理对于数据分析而言,也是一项很重要的能力。
字符串处理方法
首先我们先了解下都有哪些基础方法
首先我们了解下字符串的拆分split方法
str='i like apple,i like bananer' print(str.split(','))
对字符str用逗号进行拆分的结果:
['i like apple', 'i like bananer']
print(str.split(' '))
根据空格拆分的结果:
['i', 'like', 'apple,i', 'like', 'bananer']
print(str.index(',')) print(str.find(','))
两个查找结果都为:
12
找不到的情况下index返回错误,find返回-1
print(str.count('i'))
结果为:
4
connt用于统计目标字符串的频率
print(str.replace(',', ' ').split(' '))
结果为:
['i', 'like', 'apple', 'i', 'like', 'bananer']
这里replace把逗号替换为空格后,在用空格对字符串进行分割,刚好能把每个单词取出来。
除了常规的方法以外,更强大的字符处理工具费正则表达式莫属了。
在使用正则表达式前我们还要先了解下,正则表达式中的诸多方法。
下面我来看下个方法的使用,首先了解下match和search方法的区别
str = "Cats are smarter than dogs" pattern=re.compile(r'(.*) are (.*?) .*') result=re.match(pattern,str) for i in range(len(result.groups())+1): print(result.group(i))
结果为:
Cats are smarter than dogs
Cats
smarter
这种形式的pettern匹配规则下,match和search方法的的返回结果是一样的
此时如果把pattern改为
pattern=re.compile(r'are (.*?) .*')
match则返回none,search返回结果为:
are smarter than dogs
smarter
接下来我们了解下其他方法的使用
str = "138-9592-5592 # number" pattern=re.compile(r'#.*$') number=re.sub(pattern,'',str) print(number)
结果为:
138-9592-5592
以上是通过把#号后面的内容替换为空实现提取号码的目的。
我们还可以进一步对号码的横杆进行替换
print(re.sub(r'-*','',number))
结果为:
13895925592
我们还可以用find的方法把找到的字符串打印出来
str = "138-9592-5592 # number" pattern=re.compile(r'5') print(pattern.findall(str))
结果为:
['5', '5', '5']
正则表达式的整体内容比较多,需要我们对匹配的字符串的规则有足够的了解,下面是具体的匹配规则。
矢量化字符串函数
清理待分析的散乱数据时,常常需要做一些字符串规整化工作。
data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com', 'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'}) print(data)
结果为:
可以通过规整合的一些方法对数据做初步的判断,比如用contains 判断每个数据中是否含有关键词
print(data.str.contains('@'))
结果为:
也可以对字符串进行分拆,把需要的字符串提取出来
data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com', 'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'}) pattern=re.compile(r'(\d*)@([a-z]+)\.([a-z]{2,4})') result=data.str.match(pattern) #这里用fillall的方法也可以result=data.str.findall(pattern) print(result)
结果为:
chen [(8622, xinlang, com)]
li [(120, qq, com)]
sun [(5243, gmail, com)]
wang [(5632, qq, com)]
zhao NaN
dtype: object
此时加入我们需要提取邮箱前面的名称
print(result.str.get(0))
结果为:
或者需要邮箱所属的域名
print(result.str.get(1))
结果为:
当然也可以用切片的方式进行提取,不过提取的数据准确性不高
data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com', 'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'}) print(data.str[:6])
结果为:
最后我们了解下矢量化的字符串方法
总结
以上就是python数据清洗之字符串处理的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
本文向大家介绍python实现数据清洗(缺失值与异常值处理),包括了python实现数据清洗(缺失值与异常值处理)的使用技巧和注意事项,需要的朋友参考一下 1。 将本地sql文件写入mysql数据库 本文写入的是python数据库的taob表 其中总数据为9616行,列分别为title,link,price,comment 2。使用python链接并读取数据 查看数据概括 说明数据的导入是正确的,
理想中,我们获取的数据都是一样的格式,可是现实中,会有许多脏数据,有时候是数据太冗余,有时候是数据缺失,有时候是同一种类数据拥有不同的数据格式。比如生日,有的人使用阿拉伯数字,有的人使用英文简写,有的人则是加入了中文字符。 如果只是简单的某一列数据问题,我们可以写一个脚本进行处理,可是,当数据太复杂,数据量太大,我们自己编写脚步就太浪费时间和精力了。有没有什么可视化工具,可以像操作Excel表格很
Pandas 提供了一系列的字符串函数,因此能够很方便地对字符串进行处理。在本节,我们使用 Series 对象对常用的字符串函数进行讲解。 常用的字符串处理函数如下表所示: 函数名称 函数功能和描述 lower() 将的字符串转换为小写。 upper() 将的字符串转换为大写。 len() 得出字符串的长度。 strip() 去除字符串两边的空格(包含换行符)。 split() 用指定的分割符分割
本文向大家介绍python 数据清洗之数据合并、转换、过滤、排序,包括了python 数据清洗之数据合并、转换、过滤、排序的使用技巧和注意事项,需要的朋友参考一下 前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节。 数据合并 在pandas中可以通过merge对数据进行合并操作。 结果为: 结果为: 结果为: 可以看到data1和d
本文向大家介绍Python数据类型详解(一)字符串,包括了Python数据类型详解(一)字符串的使用技巧和注意事项,需要的朋友参考一下 一.基本数据类型 整数:int 字符串:str(注:\t等于一个tab键) 布尔值: bool 列表:list 列表用[] 元祖:tuple 元祖用() 字典:dict 注:所有的数据类型都存在想对应的类列里 二.字符串所有数据类型
问题内容: 因此,最近我一直在制作python脚本,用于从大型文本文件(> 1 GB)中提取数据。问题基本上可以归结为从文件中选择文本行,然后从某个数组中搜索字符串以查找字符串(此数组中可以包含多达1000个字符串)。这里的问题是我必须找到该字符串的特定出现,并且该字符串在该文件中可能出现无数次。同样,需要一些解码和编码,这另外会降低脚本速度。代码看起来像这样: 我的问题是:有没有办法对此进行优化