当前位置: 首页 > 编程笔记 >

python如何求数组连续最大和的示例代码

訾雅畅
2023-03-14
本文向大家介绍python如何求数组连续最大和的示例代码,包括了python如何求数组连续最大和的示例代码的使用技巧和注意事项,需要的朋友参考一下

题目描述:

一个有 n 个元素的数组,这 n 个元素既可以是正数也可以是负数,数组中连续的一个或多个元素可以组成一个连续的子数组,一个数组可能有多个这种连续的子数组,求子数组的最大值。例如,对于数组 [1,-2,4,8,-4,7,-1,-5] 而言,其最大和的子数组为 [4,8,-4,7],最大值为 15。

方法:

  • 蛮力法
  • 重复利用已经计算的子数组和
  • 动态规划
  • 优化的动态规划

1.蛮力法

找出所有的子数组,然后求出子数组的和,在所有子数组的和中取最大值。

代码实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time  : 2020/1/29 21:59
# @Author : buu
# @Software: PyCharm
# @Blog  :https://blog.csdn.net/weixin_44321080
def maxSubArrSum(arr):
  if arr == None or len(arr) <= 0:
    print('参数不合理!')
    return
  thisSum = 0
  maxSum = 0
  i = 0
  while i < len(arr):
    j = i
    while j < len(arr):# j 控制连续子数组包含的元素个数
      thisSum = 0
      k = i # k 表示连续子数组开始的下标
      while k < j:
        thisSum += arr[k]
        k += 1
      if thisSum > maxSum:
        maxSum = thisSum
      j += 1
    i += 1
  return maxSum


if __name__ == '__main__':
  arr = [1, -2, 4, 8, -4, 7, -1, -5]
  print('1 max sub array sum:', maxSubArrSum(arr))

结果:


算法性能分析:
这种方法的时间复杂度为O(n3);

2.重复利用已经计算的子数组和

由于 sum[i,j] = sum[i,j-1] + arr[j],在计算 sum[i,j] 的时候可以使用前面已计算出的 sum[i,j-1] 而不需要重新计算,采用这种方法可以省去计算 sum[i,j-1] 的时间,从而提高效率。

代码实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time  : 2020/1/30 10:53
# @Author : buu
# @Software: PyCharm
# @Blog  :https://blog.csdn.net/weixin_44321080
def maxSubArrSum(arr):
  if arr == None or len(arr) <= 0:
    print('参数不合理!')
    return
  maxSum = -2 ** 31
  i = 0
  while i < len(arr): # i: 0~7
    sums = 0
    j = i
    while j < len(arr): # j: 0~7
      sums += arr[j] # sums 重复利用
      if sums > maxSum: # 每加一次就判断一次
        maxSum = sums
      j += 1
    i += 1
  return maxSum


if __name__ == '__main__':
  arr = [1, -2, 4, 8, -4, 7, -1, -5]
  print('2 max sub array sum:', maxSubArrSum(arr))

结果:


算法性能分析:
使用了双重循环,时间复杂度为O(n2);

3.动态规划

首先可以根据数组最后一个元素 arr[n-1] 与最大子数组的关系分为以下三种情况讨论:
(包含或不包含,包含的话肯定以最后一个元素结尾;不包含的话,或者最后一个元素单独构成最大子数组,或者转换为求 arr[1…n-2] 的最大子数组)
(1) 最大子数组包含 arr[n-1],即最大子数组以 arr[n-1] 结尾;
(2) arr[n-1] 单独构成最大子数组;
(3) 最大子数组不包含 arr[n-1],那么求 arr[1…n-1] 的最大子数组可以转换为求 arr[1…n-2] 的最大子数组。
所以有:


代码实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time  : 2020/1/30 11:19
# @Author : buu
# @Software: PyCharm
# @Blog  :https://blog.csdn.net/weixin_44321080
def maxSubArrSum(arr):
  if arr == None or len(arr) <= 0:
    print('参数不合理!')
    return
  n = len(arr)
  End = [None] * n # End[i] 表示包含 arr[i] 的最大子数组和
  All = [None] * n # All[i] 表示最大子数组和
  End[n - 1] = arr[n - 1]
  All[n - 1] = arr[n - 1]
  End[0] = All[0] = arr[0]
  i = 1
  while i < n:
    End[i] = max(End[i - 1] + arr[i], arr[i]) # i=1时若arr[0]<0,则从arr[1]重新开始
    All[i] = max(End[i], All[i - 1])
    i += 1
  return All[n - 1]


if __name__ == '__main__':
  arr = [1, -2, 4, 8, -4, 7, -1, -5]
  print('3 max sub array sum:', maxSubArrSum(arr))

结果:


算法性能分析:
时间复杂度为O(n);
由于额外申请了两个数组,所以空间复杂度为O(n);

4.优化的动态规划

方法3中每次其实只用到了 End[i-1] 与 All[i-1] ,而不是整个数组中的值,所以可以定义两个变量来保存 End[i-1] 与 All[i-1] 的值,并且可以反复利用。

代码实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time  : 2020/1/30 11:55
# @Author : buu
# @Software: PyCharm
# @Blog  :https://blog.csdn.net/weixin_44321080
def maxSubArrSum(arr):
  if arr == None or len(arr) <= 0:
    print('参数不合理!')
    return
  nAll = arr[0] # 最大子数组和
  nEnd = arr[0] # 包含最后一个元素的最大子数组和
  i = 1
  while i < len(arr):
    nEnd = max(nEnd + arr[i], arr[i])
    nAll = max(nEnd, nAll)
    i += 1
  return nAll


if __name__ == '__main__':
  arr = [1, -2, 4, 8, -4, 7, -1, -5]
  print('4 max sub array sum:', maxSubArrSum(arr))

结果:


算法html" target="_blank">性能分析:
时间复杂度为O(n);
空间复杂度为O(1);

引申:

在知道了子数组的最大值后,如何确定最大子数组的和?

思路:


代码实现:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time  : 2020/1/30 12:01
# @Author : buu
# @Software: PyCharm
# @Blog  :https://blog.csdn.net/weixin_44321080
class Test:
  def __init__(self):
    self.begin = 0 # 记录最大子数组起始位置
    self.end = 0 # 记录最大子数组结束位置

  def maxSubArrSum(self, arr):
    n = len(arr)
    maxSum = -2 ** 31 # 子数组最大值
    nSum = 0 # 包含子数组最后一位的最大值
    nStart = 0
    i = 0
    while i < n:
      if nSum < 0:
        nSum = arr[i]
        nStart = i
      else:
        nSum += arr[i]
      if nSum > maxSum:
        maxSum = nSum
        self.begin = nStart
        self.end = i
      i += 1
    return maxSum

  def getBegin(self):
    return self.begin

  def getEnd(self):
    return self.end


if __name__ == '__main__':
  arr = [1, -2, 4, 8, -4, 7, -1, -5]
  t = Test()
  print('连续最大和为:', t.maxSubArrSum(arr))
  print('begin at ', t.getBegin())
  print('end at ', t.getEnd())

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • NowCoder 题目描述 {6, -3, -2, 7, -15, 1, 2, 2},连续子数组的最大和为 8(从第 0 个开始,到第 3 个为止)。 解题思路 // java public int FindGreatestSumOfSubArray(int[] nums) { if (nums == null || nums.length == 0) return 0;

  • 一、题目 输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。 例子说明: 例如输入的数组为{1, -2, 3, 10, -4, 7, 2, -5},和最大的子数组为{3, 10, -4, 7, 2}。因此输出为该子数组的和18 。 二、解题思路 解法一:举例分析数组的规律。 我们试着从头到尾逐个累加示例数组中的每个

  • 本文向大家介绍求一个数组中连续子向量的最大和相关面试题,主要包含被问及求一个数组中连续子向量的最大和时的应答技巧和注意事项,需要的朋友参考一下 考察点:数组    

  • 你是一个电视游戏节目的参与者,这给了你赢得奖金的机会。在游戏中,你会看到一系列框,每个框都包含一个允许你看到的正整数值。你有机会选择任何数量的盒子。您的总奖金是您选择包含的所有盒子的总和。这个游戏只有一个限制:如果你选择了两个连续的盒子,你不允许在总数中添加任何后续的盒子,而你的奖品是截至该点的累计金额。你的目标是最大化你的奖金。 给定一个正整数数组,代表游戏中呈现给你的每个盒子的值,返回你能赢得

  • 题目描述 输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。 求所有子数组的和的最大值,要求时间复杂度为O(n)。 例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2, 因此输出为该子数组的和18。 分析与解法 解法一 求一个数组的最大子数组和,我想最直观最野蛮的办法便是,三个f

  • 我有一个数组[1,2,3],总和为4。所以所有的连续子数组都是 [1],[1,2][2,3] 和 [1,2,3]。因此,小于或等于总和的最大长度子数组为 [1,2],长度为 2。 我用下面的方法找到了所有的子数组,并检查了子数组的和,如下所示。但是这种方法不适用于负数。{1,2,1,1,3,-2,-3,7,9};答:7