尽管Python事实上并不是一门纯函数式编程语言,但它本身是一门多范型语言,并给了你足够的自由利用函数式编程的便利。函数式风格有着各种理论与实际上的好处(你可以在Python的文档中找到这个列表):
虽然这份列表已经描述得够清楚了,但我还是很喜欢Michael O.Church在他的文章“函数式程序极少腐坏(Functional programs rarely rot)”中对函数式编程的优点所作的描述。我在PyCon UA 2012期间的讲座“Functional Programming with Python”中谈论了在Python中使用函数式方式的内容。我也提到,在你尝试在Python中编写可读同时又可维护的函数式代码时,你会很快发现诸多问题。
fn.py类库就是为了应对这些问题而诞生的。尽管它不可能解决所有问题,但对于希望从函数式编程方式中获取最大价值的开发者而言,它是一块“电池”,即使是在命令式方式占主导地位的程序中,也能够发挥作用。那么,它里面都有些什么呢?
Scala风格的Lambda定义
在Python中创建Lambda函数的语法非常冗长,来比较一下:
Python
map(lambda x: x*2, [1,2,3])
Scala
List(1,2,3).map(_*2)
Clojure
(map #(* % 2) '(1 2 3))
Haskell
map (2*) [1,2,3]
受Scala的启发,Fn.py提供了一个特别的_对象以简化Lambda语法。
from fn import _ assert (_ + _)(10, 5) = 15 assert list(map(_ * 2, range(5))) == [0,2,4,6,8] assert list(filter(_ < 10, [9,10,11])) == [9]
除此之外还有许多场景可以使用_:所有的算术操作、属性解析、方法调用及分片算法。如果你不确定你的函数具体会做些什么,你可以将结果打印出来:
from fn import _ print (_ + 2) # "(x1) => (x1 + 2)" print (_ + _ * _) # "(x1, x2, x3) => (x1 + (x2 * x3))"
流(Stream)及无限序列的声明
Scala风格的惰性求值(Lazy-evaluated)流。其基本思路是:对每个新元素“按需”取值,并在所创建的全部迭代中共享计算出的元素值。Stream对象支持<<操作符,代表在需要时将新元素推入其中。
惰性求值流对无限序列的处理是一个强大的抽象。我们来看看在函数式编程语言中如何计算一个斐波那契序列。
Haskell
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
Clojure
(def fib (lazy-cat [0 1] (map + fib (rest fib))))
Scala
def fibs: Stream[Int] = 0 #:: 1 #:: fibs.zip(fibs.tail).map{case (a,b) => a + b}
现在你可以在Python中使用同样的方式了:
from fn import Stream from fn.iters import take, drop, map from operator import add f = Stream() fib = f << [0, 1] << map(add, f, drop(1, f)) assert list(take(10, fib)) == [0,1,1,2,3,5,8,13,21,34] assert fib[20] == 6765 assert list(fib[30:35]) == [832040,1346269,2178309,3524578,5702887]
蹦床(Trampolines)修饰符
fn.recur.tco是一个不需要大量栈空间分配就可以处理TCO的临时方案。让我们先从一个递归阶乘计算示例开始:
def fact(n): if n == 0: return 1 return n * fact(n-1)
这种方式也能工作,但实现非常糟糕。为什么呢?因为它会递归式地保存之前的计算值以算出最终结果,因此消耗了大量的存储空间。如果你对一个很大的n值(超过了sys.getrecursionlimit()的值)执行这个函数,CPython就会以此方式失败中止:
>>> import sys >>> fact(sys.getrecursionlimit() * 2) ... many many lines of stacktrace ... RuntimeError: maximum recursion depth exceeded
这也是件好事,至少它避免了在你的代码中产生严重错误。
我们如何优化这个方案呢?答案很简单,只需改变函数以使用尾递归即可:
def fact(n, acc=1): if n == 0: return acc return fact(n-1, acc*n)
为什么这种方式更佳呢?因为你不需要保留之前的值以计算出最终结果。可以在Wikipedia上查看更多尾递归调用优化的内容。可是……Python的解释器会用和之前函数相同的方式执行这段函数,结果是你没得到任何优化。
fn.recur.tco为你提供了一种机制,使你可以使用“蹦床”方式获得一定的尾递归优化。同样的方式也使用在诸如Clojure语言中,主要思路是将函数调用序列转换为while循环。
from fn import recur @recur.tco def fact(n, acc=1): if n == 0: return False, acc return True, (n-1, acc*n)
@recur.tco是一个修饰符,能将你的函数执行转为while循环并检验其输出内容:
函数式风格的错误处理
假设你有一个Request类,可以按照传入其中的参数名称得到对应的值。要想让其返回值格式为全大写、非空并且去除头尾空格的字符串,你需要这样写:
class Request(dict): def parameter(self, name): return self.get(name, None) r = Request(testing="Fixed", empty=" ") param = r.parameter("testing") if param is None: fixed = "" else: param = param.strip() if len(param) == 0: fixed = "" else: fixed = param.upper()
额,看上去有些古怪。用fn.monad.Option来修改你的代码吧,它代表了可选值,每个Option实例可代表一个Full或者Empty(这点也受到了Scala中Option的启发)。它为你编写长运算序列提供了简便的方法,并且去掉除了许多if/else语句块。
from operator import methodcaller from fn.monad import optionable class Request(dict): @optionable def parameter(self, name): return self.get(name, None) r = Request(testing="Fixed", empty=" ") fixed = r.parameter("testing") .map(methodcaller("strip")) .filter(len) .map(methodcaller("upper")) .get_or("")
fn.monad.Option.or_call是个便利的方法,它允许你进行多次调用尝试以完成计算。例如,你有一个Request类,它有type,mimetype和url等几个可选属性,你需要使用最少一个属性值以分析它的“request类型”:
from fn.monad import Option request = dict(url="face.png", mimetype="PNG") tp = Option \ .from_value(request.get("type", None)) \ # check "type" key first .or_call(from_mimetype, request) \ # or.. check "mimetype" key .or_call(from_extension, request) \ # or... get "url" and check extension .get_or("application/undefined")
其余事项?
我仅仅描述了类库的一小部分,你还能够找到并使用以下功能:
正在进行中的工作
自从在Github上发布这个类库以来,我从社区中收到了许多审校观点、意见和建议,以及补丁和修复。我也在继续增强现有功能,并提供新的特性。近期的路线图包括以下内容:
这是一本关于函数响应式编程的书,对吗?! 好吧,就像我们在学会跑步之前必须先学会走路一样,在高效地进行函数响应式编程之前,我们得学会怎么样进来函数式编程。
函数式编程的一个关键的概念是”高阶函数”。从维基百科的解释来看,一个高阶函数需要满足下面两个条件: 一个或者多个函数作为输入。 有且仅有一个函数输出。 在Objective-c中我们经常使用block作为函数。我们不需要跋山涉水地去寻找‘高阶函数’,实际上,Apple为我们提供的Foundation库中就有。考虑象下面这么简单的一个NSNumber 的数组: NSArray * array =
本文向大家介绍用Python进行基础的函数式编程的教程,包括了用Python进行基础的函数式编程的教程的使用技巧和注意事项,需要的朋友参考一下 许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术。本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格。 文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces。第二部分选取长一点的
在过去的章节中,我们使用RXCollections后不需要额外的可变变量就可以在列表上进行操作,虽然RXCollections可能隐式地生成了这样的可变变量来完成任务,但是这不是我们要关心的,因为它已经为我们抽象出了这样的方式,通过:mapping\filtering和folding这种方式让我们不必在意实现任务的步骤。(当然,这并不是说,我们不应该熟悉RXCollections的源码,只是告诉你
这一章有关函数式编程的事例代码可能会让你开始担心性能的问题。例如,在一个长数组中,给每个元素创建一个过渡的字符描述并把他们追加到前面的结果中去,比起命令式编程来说,可能需要消耗更长的时间。 这可能是个问题,但幸运的是,现在的计算机(甚至iPhone手机)性能已经足够强大,在大多数情况下,这种性能损耗是无关紧要的,况且当这种损耗变成一个性能瓶颈的时候,你随时都可以回头去优化她让她更加高效。CPU的时
Flod 是一个有趣的高阶函数-她把列表中的所有元素变成一个值。一个简单的高阶折叠能够用来给数值数组求和。 NSNumber * sum = [array rx_foldWithBlock:^ id (id memo , id each){ return @([memo integerValue] + [each integerValue]); }]; 输出的值为@6.数组中的每一个元素按