当前位置: 首页 > 编程笔记 >

Python机器学习之K-Means聚类实现详解

吕征
2023-03-14
本文向大家介绍Python机器学习之K-Means聚类实现详解,包括了Python机器学习之K-Means聚类实现详解的使用技巧和注意事项,需要的朋友参考一下

本文为大家分享了Python机器学习之K-Means聚类的实现代码,供大家参考,具体内容如下

1.K-Means聚类原理

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集);(2)分别计算每个数据点到k个种子点的距离,离哪个种子点最近,就属于哪类;(3)重新计算k个种子点的坐标(简单常用的方法是求坐标值的平均值作为新的坐标值;(4)重复2、3步,直到种子点坐标不变或者循环次数完成。

2.数据及其寻找初步的聚类中心

数据为Matlab加载格式(mat),包含X变量,数据来源为(大家可以去这下载),X为300*2维变量,由于是2维,所以基本上就是在平面坐标轴上的一些点中进行聚类。

我们首先构建初步寻找聚类中心(centroids,质心)函数,再随机设置初始质心,通过欧氏距离初步判断X的每一个变量属于哪个质心。代码为:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import loadmat

def find_closest_centroids(X, centroids):
  m = X.shape[0]
  k = centroids.shape[0] #要聚类的类别个数
  idx = np.zeros(m) 
  
  for i in range(m):
    min_dist = 1000000 #迭代终止条件
    for j in range(k):
      dist = np.sum((X[i,:] - centroids[j,:]) ** 2) 
      if dist < min_dist:
        # 记录当前最短距离和其中心的索引值
        min_dist = dist
        idx[i] = j
  
  return idx
data = loadmat('D:\python\Python ml\ex7data2.mat')
X = data['X']
initial_centroids = np.array([[3, 3], [6, 2], [8, 5]])

idx = find_closest_centroids(X, initial_centroids)
idx[0:3]

在这里先生成m(这里为300)个0向量,即idx,也就是假设X的每个变量均属于0类,然后再根据与初始质心的距离计算dist = np.sum((X[i,:] - centroids[j,:]) ** 2),初步判断每个变量归属哪个类,最终替代idx中的0.

3.不断迭代寻找质心的位置并实现kmeans算法

上述idx得到的300维向量是判断X中每个变量的归属类别,在此基础上,再对初始质心集群位置不断调整,寻找最优质心。

def compute_centroids(X, idx, k):
  m, n = X.shape
  centroids = np.zeros((k, n))
  
  for i in range(k):
    indices = np.where(idx == i)
    centroids[i,:] = (np.sum(X[indices,:], axis=1) / len(indices[0])).ravel()
  #这里简单的将该类中心的所有数值求平均值作为新的类中心
return centroids
compute_centroids(X, idx, 3)

根据上述函数,来构建kmeans函数实现K-means聚类算法。然后根据得到的每个变量归属类别与质心坐标,进行可视化。

def run_k_means(X, initial_centroids, max_iters):
  m, n = X.shape
  k = initial_centroids.shape[0]
  idx = np.zeros(m)
  centroids = initial_centroids
  
  for i in range(max_iters):
    idx = find_closest_centroids(X, centroids)
    centroids = compute_centroids(X, idx, k)
  
  return idx, centroids
idx, centroids = run_k_means(X, initial_centroids, 10)
cluster1 = X[np.where(idx == 0)[0],:] #获取X中属于第一个类别的数据集合,即类别1的点
cluster2 = X[np.where(idx == 1)[0],:]
cluster3 = X[np.where(idx == 2)[0],:]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(cluster1[:,0], cluster1[:,1], s=30, color='r', label='Cluster 1')
ax.scatter(cluster2[:,0], cluster2[:,1], s=30, color='g', label='Cluster 2')
ax.scatter(cluster3[:,0], cluster3[:,1], s=30, color='b', label='Cluster 3')
ax.legend()
plt.show()

得到图形如下:

image.png

4.关于初始化质心的设置

我们前边设置的初始质心:[3, 3], [6, 2], [8, 5],是事先设定的,并由此生成idx(每一变量归属类别的向量),这是后边进行kmeans聚类的基础,实际上对于二维以上数据,由于无法在平面坐标轴展示,很难一开始就设定较好的初始质心,另外,初始质心的设定也可能会影响算法的收敛性。所以需要我们再构造个初始化质心设定函数,来更好地设置初始质心。

def init_centroids(X, k):
  m, n = X.shape
  centroids = np.zeros((k, n)) #初始化零矩阵
  idx = np.random.randint(0, m, k) #返回0-m之间的整数值
  
  for i in range(k):
    centroids[i,:] = X[idx[i],:]
  
return centroids
init_centroids(X, 3)

这里所生成的初始质心位置,其实就是从X的数据中随机找3个变量作为初始值。在此基础上,令initial_centroids = init_centroids(X, 3),然后代入前边的code中,重新运行一遍即可。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python实现k-means聚类算法,包括了python实现k-means聚类算法的使用技巧和注意事项,需要的朋友参考一下 k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重

  • 聚类 聚类,简单来说,就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。它是一种无监督的学习(Unsupervised Learning)方法,不需要预先标注好的训练集。聚类与分类最大的区别就是分类的目标事先已知,例如猫狗识别,你在分类之前已经预先知道要将它分为猫、狗两个种类;而在你聚类之前,你对你的目标是未知的,同样以动物为例,对于一个动物集来

  • k-means 算法,也被称为 k-平均 或 k-均值,是一种得到最广泛使用的聚类算法。 它把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。 相异度计算方法: 欧几里得距离 曼哈顿距离 闵可夫斯基距离 皮尔逊相关系数 优点 简单、快速,可并行计算 已经获得防范的应用 缺点 必须事先给出k(要生成的簇的数目),

  • 本文向大家介绍k-means 聚类算法与Python实现代码,包括了k-means 聚类算法与Python实现代码的使用技巧和注意事项,需要的朋友参考一下 k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析 一、初始化聚类中心 首先随机选择集合里的一个元素作为第一个聚类中

  • @subpage tutorial_py_kmeans_understanding_cn 阅读以获得对 K-Means Clustering 的直观理解。 @subpage tutorial_py_kmeans_opencv_cn 现在我们来试试 OpenCV 中的 K-Means 函数。 ​

  • 使用k-means算法时需要指定分类的数量,这也是算法名称中“k”的由来。 k-means是Lloyd博士在1957年提出的,虽然这个算法已有50年的历史,但却是当前最流行的聚类算法! 下面让我们来了解一下k-means聚类过程: 我们想将图中的记录分成三个分类(即k=3),比如上文提到的犬种数据,坐标轴分别是身高和体重。 由于k=3,我们随机选取三个点来作为聚类的起始点(分类的中心点),并用红黄