#得物一面# 1.问项目 2.相比传统机器学习有什么优势或者劣势 3.介绍下SVM 3.有哪些正则化项,并各自介绍下 4.encoder decoder encoder-decoder三个架构 5.介绍下transformer 6.pairwise loss, triplet Loss损失函数 7.最近读的论文 全程25分钟,回答的支支吾吾,我就知道要没了。太菜了,继续修炼
三面30min,结束后秒挂 线上等了20分钟才开始面试 首先自我介绍,问了一些比较常规的问题 校园里的项目不够,主要是实习经历,问我为什么学校里没啥项目(专硕+导师确实没啥项目啊…) 问了一下实习的加班情况,实话实说实习生没有加班(正式员工也不咋加班) 实习经历和投的部门不太一样,问了一下为什么投这个部门,是不是想赚钱(不太理解这个逻辑?) 性格是内向还是外向 工作中同事和你关系怎么样 在工作中的
智驾科技(MAXIEYE)也是一家师兄挺推荐的公司~提供自动驾驶解决方案 笔试 单选+多选+编程,笔试是很专业的SLAM方向的题目,不像其他公司把多个方向混一起考察的 单选考查了一些欧拉角转旋转矩阵,纯虚函数,基于优化和滤波的开源VIO系统的了解等等,编程两道题分别是模拟和动态规划 单选还考察了一个我完全没接触过的知识点,在这里备忘一下:水平失准角的对准误差取决于加速度计的等效水平测量误差;方位失
滴滴其实没有专门的slam岗,因此我投的是算法工程师-自动驾驶大类,但是8月份面完如今依然在泡池子 滴滴面试可以提前留够时间,是一面完过直接约二面的,可以一天直接面完 一面 1、五分钟自我介绍 2、简历上项目深挖 3、手撕代码,指定使用迭代法中序遍历二叉树,不能使用递归 4、反问环节 二面 跟一面的流程几乎相同,面手撕试官出的题目是删除链表中倒数第n个节点,力扣原题 三面 三面没有手撕环节,全程介
旷视我投的是提前批的Learning-based V-SLAM,面试的时候其实很忐忑,因为我没什么learning背景,但询问面试官后发现其实vslam也是可以投的 一面 1、五分钟自我介绍 2、简历上项目深挖 3、由于简历中提到了矢量化相关的工作,因此面试官出的题目是给定一组二维点拟合直线,但指定函数方程为ax+by+1=0,使用最小二乘实现函数功能即可,可以使用eigen库 此外还问了一道概率
投的是SLAM/三维重建/图文多模态算法工程师-视觉团队的岗位 一面 1、五分钟自我介绍 2、简历上项目深挖 3、由于简历中提到了矢量化相关的工作,因此面试官出的题目是给定一组二维点拟合直线,使用最小二乘实现函数功能即可,可以使用eigen库 4、反问环节 一些碎碎念 其实整体面下来我可以感受到面试官应该是做感知出身的,至于为什么会安排专业不太对口的面试官来面我也不太理解 今年SLAM岗位真的很少
3.11投递简历 算法岗 3.16笔试 A了3道,其余两道过了70%+20%左右 3.26 一面 投的是CV算法,但是被机器学习/数据挖掘算法岗捞了,以为大概率白给了,前一天恶补了机器学习和概率论的相关知识点,没想到压根没问 时长1h(部分问题有些遗忘) 介绍项目(20min+) 项目中针对模型的设计改进,如何保证,或者说引导模型学习到你期望的能力 介绍Transformer中的位置编码 使用正弦
1,生成器和迭代器 2,try,except,else finally,with的作用 3,浅深拷贝, 4,L1和L2范数正则化 5,如果5个API需要调用,用什么方法来提升效率 6,样本不均衡问题解决思路 7,常见的激活函数以及为什么要用到激活函数。 8,手撕leetcode子串II 其他的忘了,
感觉已经凉透了。。。写点热乎的凉经攒攒人品。反馈效率非常3高,只要这轮过了当天就会联系你约下一面,是我面过的最不墨迹的单位 一面 聊一个项目(自己挑) Deepspeed了解吗 介绍下熟悉的主流大模型(llama) 和transformer有什么区别/改进 旋转位置编码怎么做的 了解强化学习吗 算法题: 1.大小为k的滑动窗口扫描无序数组(步长1),输出移动过程中的窗口最大值 2.最大值栈 反问
全程1h. 项目 多分类的损失函数 多标签损失函数怎么设计 BN层计算方式和作用 自注意力计算方式 多头自注意力机制、复杂度 手撕代码,没撕出来,面完一查才知道是困难,lc410 反问: 无自驾背景是否介意 应该无了
鼎阳科技招聘流程一共分为笔试,技术面和HR面。 笔试题型主要包括填空、问答之类的题,与专业和岗位相关性较大,但是整体难度不高。 笔试通过后是技术面,会有两个面试官,主要还是针对简历上的项目进行提问,我这边提问的比较少,1位面试官提了2个问题就结束了,总体面试时间就10分钟。我看牛客其他鼎阳科技面试还有1小时的,可能每个人都不一样吧。 技术面通过了之后是HR面,主要是谈了有关工作地点,薪酬待遇,上班
自我介绍,无手撕,25分钟 问学校做的研究,研究和ai无关,被质疑做的东西太简单了创新点不够 问平时看论文吗?一个月多少篇? 完全靠比赛自学的,论文看的很少 问语言大模型怎么训练的和框架 又问视觉大模型,平时怎么自学 反问,问了两个问题,回答糊弄了两句 感谢你的时间,结束 不是推荐算法吗?怎么全问这些呀? #算法工程师# #面试# #科大讯飞#
一面 时序融合的方案有哪些; 撕题:conv2d、开根号(二分、提示后写出的) 建议: 1.个人介绍要简介、突出重点;介绍每个工作前说说背景,让面试官知道为什么做这个,意义是什么 2.关注bev前沿,特别是时序融合; 3.可能有的公司不方便透露面评,换个问法,比如针对今天的面试面试官有没有什么指导建议; 二面 1.聊bev时序模型;为什么使用bevformer v1架构? 2.撕题:链表后一半插值
0828晚上一面,电话面 正在摆烂,突然来了个电话,说是海康的电话面 首先自我介绍 然后让我选一个最具代表性的工作讲讲 然后问一些背景问题,比如泥电的英才学院是干嘛的 然后问我做多模态懂不懂cv那边的东西,举个例子啥的 最后是反问 15分钟,没什么八股,都是问项目,不知道能不能过
一面 1h 自我介绍 深挖论文 深挖实习 八股transformer、diffusion model 手撕lc每日温度 反问 二面 30min 自我介绍 在哪里上班 优缺点 为什么做这个方向 导师是谁 没听过你们学校有做这个方向的啊? 中科大西电清华上交的谁谁谁你认不认识,美国的什么什么实验室有听过吗 手撕lc旋转图像 没有反问 3天后感谢信,二面简直是抽象死了,除了有手撕之外跟hr面没差别,还鸽