我有两个不同的csv,其中包含列车数据和测试数据。我从这些train_features_df和test_features_df创建了两个不同的数据帧。请注意,测试和训练数据有多个分类列,因此我需要对它们应用labelEncoder,因为它适合我的数据集。所以我在列车和测试数据上分别应用了标签编码器。当我打印列车和测试数据集的新编码值时,我看到对于相同特征的相同分类值,新编码数据的输出是不同的。这是否意味着我必须合并列车和测试数据。然后应用标签编码,然后再次将它们分开?
from sklearn.preprocessing import LabelEncoder
target=train_features_df['y']
train_features_df=train_features_df.drop(['y'], axis=1)
train_features_df.head()
y = target.values
print("printing feature column of train datasets: \n")
print(train_features_df.values)
le=LabelEncoder()
X_train_label_encoded=train_features_df.apply(le.fit_transform)
print("\n printing feature column of train datasets after label encoder: \n")
print(X_train_label_encoded.head())
print("printing test feature datasets: \n")
print(test_features_df)
X_test_label_encoded=test_features_df.apply(le.fit_transform)
print("printing test feature encoded datasets: \n")
print(X_test_label_encoded)
以上结果如下:-
printing feature column of train datasets:
[['k' 'v' 'at' ... 0 0 0]
['k' 't' 'av' ... 0 0 0]
['az' 'w' 'n' ... 0 0 0]
X0 X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377 X378 \
0 32 23 17 0 3 24 9 14 0 0 ... 0 0 1 0
1 32 21 19 4 3 28 11 14 0 0 ... 1 0 0 0
2 20 24 34 2 3 27 9 23 0 0 ... 0 0 0 0
printing test feature datasets:
X0 X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377 X378 X379 \
0 az v n f d t a w 0 0 ... 0 0 0 1 0
1 t b ai a d b g y 0 0 ... 0 0 1 0 0
2 az v as f d a j j 0 0 ... 0 0 0 1 0
X0 X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377 X378 \
0 21 23 34 5 3 26 0 22 0 0 ... 0 0 0 1
1 42 3 8 0 3 9 6 24 0 0 ... 0 0 1 0
2 21 23 17 5 3 0 9 9 0 0 ... 0 0 0 1
3 21 13 34 5 3 31 11 13 0 0 ... 0 0 0 1
4 45 20 17 2 3 30 8 12 0 0 ... 1 0 0 0
如果我们看到在lebel编码后的列车数据帧中,第一列中的az
值转换为值20,而在lebel编码后的测试数据帧中,第一列中的az
值转换为值21。
训练集和测试集中出现的唯一值可能不同。在这种情况下,编码也会有所不同。
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit_transform([1,2,3,4,5])
# array([0, 1, 2, 3, 4], dtype=int64)
le.fit_transform([2,3,4,5])
# array([0, 1, 2, 3], dtype=int64)
您应该对列车数据进行拟合,然后对测试数据进行变换
,以获得相同的编码:
l_train = [1,2,3,4,5]
le.fit(l_train)
le.transform(l_train)
# array([0, 1, 2, 3, 4], dtype=int64)
le.transform([2,3,4,5])
#array([1, 2, 3, 4], dtype=int64)
但请注意,不应为分类功能使用标签编码器。有关分类功能,请参见LabelEncoder?为了解释原因<代码>标签编码只能在标签上使用。例如,您应该查看OneHotEncoder
。
为了评估我们的监督模型的泛化能力,我们可以将数据分成训练和测试集: from sklearn.datasets import load_iris iris = load_iris() X, y = iris.data, iris.target 考虑如何正常执行机器学习,训练/测试分割的想法是有道理的。真实世界系统根据他们拥有的数据进行训练,当其他数据进入时(来自客户,传感器或其他来源),经过训
我正在用python构建一个预测模型,其中包含两个独立的训练集和测试集。培训数据包含数字类型分类变量,例如邮政编码[915212315112355,…],以及字符串分类变量,例如,城市[‘芝加哥’、‘纽约’、‘洛杉矶’、…]。 为了训练数据,我首先使用“pd”。获取_dummies'以获取这些变量的虚拟变量,然后用转换后的训练数据拟合模型。 我对测试数据进行同样的转换,并使用经过训练的模型预测结果
问题内容: 因此,我对此有疑问,一直在寻找答案。所以问题是我何时使用 这之后,我将训练和测试模型(,作为特征,如标签),并得到一些准确度得分。现在我的疑问是,当我必须预测新数据集的标签时会发生什么。说, 因为当我规范化列时,和的值将根据新数据而不是将在其上训练模型的数据来更改。因此,现在将是下面的数据准备步骤之后的数据。 的价值和将关于改变和价值。的数据准备是关于的。 有关不同数字的数据准备如何有
我有一个相当大的dataframe形式的数据集,我想知道如何将dataframe拆分为两个随机样本(80%和20%)进行训练和测试。 谢谢!
问题内容: 我像这样使用scikit-learn的SVM: 我的问题是,当我使用分类器预测训练集成员的班级时,即使在scikit- learns实现中,分类器也可能是错误的。(例如) 问题答案: 是的,可以运行以下代码,例如: 分数是0.61,因此将近40%的训练数据被错误分类。部分原因是,即使默认内核是(理论上也应该能够对任何训练数据集进行完美分类,只要您没有两个带有不同标签的相同训练点),也可
从excel文件读取测试数据。要求:我想首先我的所有测试应该运行在相同的测试数据,即excel行,然后所有测试与另一行。 解决方案:尝试将@Factory与我的@DataProvider一起使用 问题:如果我在@dataProvider中使用核心值,那么它可以正常工作。但是当从excel动态获取时,如果给我错误:[错误]导致:java.lang.NullPointerException } 基类
我有一个数据集,它包含多个列,这些列的值是字符串格式的。现在我需要使用labelEncoder将这些文本列转换为数值。在下面的例子中,y是我的tain数据集的目标,A0到A13是不同的特征。还有50个特性,但我在这里提供了一个子集。现在,我如何将labelencoder应用于从A0到A8的数据集,并为创建模型创建一个新的编码数据帧?我知道我们可以像下面这样做,但这会说只编码一列。我希望编码器应用于
问题内容: 我正在尝试运行以下Colab项目,但是当我想将训练数据分为验证和训练部分时,出现此错误: 我使用以下代码: 如何解决此错误? 问题答案: 根据Tensorflow Dataset docs ,百分比拆分是可能的,例如 如示例所示,更改列表时,您的代码将起作用: 使用上面的代码,有2590个条目,而有1080个。